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Abstract
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1 Introduction

“To climb steep hills requires a slow pace at first.” — William Shakespeare.

In structural empirical studies, model specification is important because it affects inferences and counterfactual exper-

iments to draw important policy implications. An important aim of this study is to develop an efficient and yet easy-to-use

method for researchers to test a linear structural relationship between economic variables. The testing methodology pro-

posed in this study extends the ones already developed for reduced-form models.

Studies such as Bierens (1990) and Baek, Cho, and Phillips (2015) developed a methodology to test a linear model

hypothesis against general model misspecification in a reduced-form framework. In particular, Baek, Cho, and Phillips

(2015) obtained the null limit distribution of the quasi-likelihood ratio (QLR) test by estimating the economic variable of

interest’s power coefficient, showing that it has omnibus power. We apply their methodology to the generalized method

of moment (GMM) framework and test a linear structural model hypothesis using a distance-difference (DD) test as in

Baek, Cho, and Phillips (2015). Then, we derive the null limit distribution of the DD-test and show that it has omnibus

power against a nonlinear structural model.

Cho and Phillips (2018) further developed a sequential testing procedure using the QLR-test to consistently estimate

a nonlinear reduced-form equation. We apply the sequential testing procedure to the DD-test as in Cho and Phillips

(2018) and demonstrate that the unknown polynomial structural model can be consistently estimated using the current

approach. In case the structural equation differs from any polynomial equation, the polynomial equation estimated using

finite samples and our sequential testing approach can be understood as an approximate structural equation.

We also compare our testing procedures with some widely used ones in the literature. First, we consider Horowitz’s

(2006) and Breunig’s (2015) specifications tests in addition to the Sargan (1958, 1988) and Hansen’s (1982) J-test used

for a correctly specified structural model hypothesis and the validity of instrumental variables (e.g., Newey, 1985). We

conduct extensive simulations to compare the four tests and find that they can complement each other. In particular, our

simulation suggests that the DD-sequential testing procedure selects the correct model more often than the J-sequential

testing when the sample size is relatively small. Second, we investigate Andrews’s (1999) procedure of applying the

Akaike (1973), Schwarz (1978), and Hannan and Quinn (1979) information criteria for selecting moment conditions, and

thus introduce a procedure to ensure the number of moment conditions that identify unknown parameters. We compare

the moment selection criteria (MSCs) with the sequential testing procedure using simulations, finding that the sequential

testing and MSCs can supplement each other.

In the semi/nonparametric literature, studies such as Hong and White (1995), Ai and Chen (2003), Newey and Powell

(2003), and Chen and Pouzo (2015) investigated how to estimate and test for unknown structural equations using various

semi/nonparametric methods. In contrast to these methods, the DD-test is fully parametric, thus, its computational

simplicity is appealing. Furthermore, despite its simple structure, it possesses a consistent omnibus power against a broad

range of misspecified models under a mild moment condition, thereby the drawbacks of semi/nonparametric methods
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using tuning parameters can be complemented.

The rest of this paper is structured as follows: Section 2 tests for a nonlinear structural relationship and discusses

its motivation and associated problems. This section also examines the testing of the linearity condition by formally

introducing the DD-test. The null limit distribution and power properties of the test are also examined. The same section

also examines the asymptotic size of the DD-test and the influence of weak instrumental variables to the DD-test. Section

3 extends the linear structure testing to polynomial structures using the same test. Furthermore, the sequential testing

is applied to estimate the polynomial structural equation. Section 4 reports Monte Carlo simulations and compares the

DD-test with other methodologies, while Section 5 presents an empirical illustration. Finally, Section 6 concludes the

paper. Mathematical proofs and other supplementary information are presented in Appendix.

Before moving to the next section, we introduce some useful mathematical notations. For functions f(·) and j =

1, 2, . . ., let (dj/djx)f(x̄) denote (dj/dxj)f(x)|x=x̄ for notational simplicity. We also assume that ι is the n× 1 vector

of unity, where n denotes the sample size throughout the paper.

2 Motivation and Structural Linearity Testing

2.1 Motivation and Heuristics

To motivate this study, we first present a simple model. Assume that Yt and Xt are dependent and positively valued

explanatory variables respectively, such that for a unknown function m(·), their structural relationship is

Yt = m(Xt) + Ut. (1)

In (1), letXt and Ut be correlated. One of the main aims of this study is to test whether the structural relationship between

Yt and Xt, viz., m(·), is linear:

H0 : m(Xt) = ξ0 + ξ1Xt a.s. (2)

Some of the economic applications motivating this study include Mincer’s (1958) linear model between log wage

and education, and Balassa (1964) and Samuelson’s (1964) linear structural model between the ratio of purchasing

power parity to exchange rate and the per capita income differentials. As another example, a simple log-linear production

function is linear with respect to log production factors. If it is subject to input bias problem, the model turns out to

contain an endogenous variable. We detail this in Section 5 for our empirical illustration.

We are motivated to test the null hypothesis from the possibility that the linear model is arbitrarily misspecified. The

following examples specifically illustrate our motivation. As our first example, the linear relationship between log wage

and education years posited by Mincer (1958) has been questioned in the literature. Mincer (1997) himself obtained a

nonlinear education yield function by assuming heterogeneous preferences and earnings opportunities for individuals. As

another example, Card and Krueger (1992) obtained a nonlinear return to education along with the so-called credential
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effect. In terms of the log-linear production function model subject to input bias problem, prior literature attempts to

explain the recent large distributional consequences of factor shares by attributing them to the change of production

technology (e.g., Krusell et al., 2000; Antràs, 2004; Karabarbounis and Neiman, 2014; Piketty, 2014; Acemoglu and

Restrepo, 2018; Raval, 2019; Oberfield and Raval, 2021). Nevertheless, if the production technology exhibits a log-linear

production function, factor shares always remain constant, so that the typically assumed Cobb-Douglas technology must

be misspecified. In such cases, estimating linear models using GMM estimation would introduce an asymptotic bias (e.g.,

Hall and Inoue, 2003), rendering the asymptotic distribution model dependent.

We aim to provide a test methodology that consistently detects arbitrary nonlinearity rather well and overcomes

the challenges associated with sieve series estimation, and thus leads to a simple and straightforward testing procedure.

Specifically, we first extend the approach of Bierens (1990) and Baek, Cho, and Phillips (2015), who estimate m(·) when

Xt is exogenous.

To this end, we first heuristically describe our testing procedure. We specify the parametric model for the structural

error Ut as follows:

M := {mt(ξ0, δ, β, γ) := Yt − ξ0 − ξ1Xt − βXγ
t : (ξ0, ξ1, β, γ) ∈ Ω ⊂ R4}.

We then estimate the unknown parameters using the GMM estimation method. Note that the linear model is nested in

M as a special case. If γ∗ = 0, 1, or β∗ = 0, then Yt and Xt would be structurally linear, requiring the linear structure

hypothesis to be jointly tested via the hypotheses on γ∗ and β∗. We apply the likelihood-ratio (LR) test principle and test

the linearity hypothesis. That is, we compare Sargan (1958, 1988) and Hansen’s (1982) J-tests implied byM and the

linear model, and reject the linearity hypothesis if the difference between the two J-tests is sufficiently large. We formally

define our test below; this is the DD-test.

The DD-test based on M has the following useful properties over other methodologies in the literature. First, the

DD-test is consistent for general nonlinearity, because the power transform Xγ
t inM is a sieve basis. Note that a number

of studies in prior literature have tested the linearity condition, and most of them rely on the semi/nonparametric method.

For example, Chen and Pouzo (2015) estimate m(·) using a penalized semi-parametric minimum distance estimation

method and a sieve series under the complete conditional distribution condition of Xt on instrumental variables. They

also demonstrate that m(·) can be consistently estimated by letting the number of elements in the sieve series increase

as n increases, further introducing a methodology to test the correct model assumption consistently.1 In any continuous

function m(·), including (·)j as regressors with j = 1, 2, 3, . . . would approximate m(·) arbitrarily well (e.g., Chen and

Liao, 2014); this means that if m(·) is a linear function, adding any sieve basis to the linear function as regressor would

fail to reduce the approximation error measured by the GMM distance. Here, we propose the DD-test to compare the

GMM distances measured by the linear model andM in parallel with the LR-test. Note that the degree of sieve basis γ is
1For Xt as an exogenous variable, Hong and White (1995) estimate m(·) using a sieve series estimation method, to provide an omnibus

specification testing.
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estimated to obtain the optimum sieve that best improves the DD-test, instead of including the maximum number of sieve

series limited by n. Second, we compute the DD-test using the GMM estimation method without assuming the complete

conditional probability distribution of Xt on instrumental variables; thus, we do not consider the penalty function of

m(·) in our estimation. Furthermore,M is a fully parametric model, making the associated inferences straightforward.

Third, the DD-test can play the role of diagnostic test before estimating m(·) using other methodology. Note that Ai

and Chen (2003), Newey and Powell (2003), and Chen and Pouzo (2015) estimate the unknown structural equation using

the semi/nonparametric minimum distance and nonparametric two-stage least squares estimation methods, respectively;

these methods can be computationally demanding. If the DD-test does not reject the linear model assumption, no need

would arise for their estimations.

A popular trend in the literature is to test the linear model assumption usingM or such other models. First, when

Xt is an exogenous variable, Bierens (1990) and Baek et al. (2015) test for the linear model misspecification using

the model similar to M, as mentioned above. Their methodology can be easily applied even when testing correctly

specified structural models by treating the employed instrumental variables as conditioning variables. Second, Sargan

(1958, 1988) and Hansen’s (1982) J-test typically tests the structurally correct model assumption and the validity of

instrumental variables. Thus, the J-test rejecting the null does not necessarily imply that the linear structural model is

misspecified. It may reject the null because the instrumental variables are not valid. However, the DD-test presumes valid

instrumental variables and focuses on testing for structural model misspecification with omnibus power against general

nonlinear functions. Third, Horowitz (2006), Breunig (2015), and Zhu (2020) also provide tests with similar goals to the

DD-test, but their test structures are different from what the DD-test requires. Their testing methodology is nonparametric

and based on conditional moment restrictions, so that their tests are defined by their own test requirements such as basis

functions and reference measures. In contrast, the DD-test is applied to a fully parametric model, making it different from

the nonparametric tests. Despite this parametric structure, the DD-test exhibits comparable powers to the other tests as

our simulations demonstrate in Section 4.

2.2 Testing Environment and Assumptions

We now formally discuss the model and data structure of interest by generalizing M. Assume that {(E′t,Z′t, Ut)′ :=

(Xt,D
′
t,Z
′
t, Ut)

′ : t = 1, 2, . . .} is a strictly stationary ergodic (SSE) process; Xt is a positively valued endogenous

variable; Dt(∈ Rk) is an exogenous variable; and Zt(∈ Rp) is an instrumental variable with k and p ∈ N. Given this

data generating process (DGP) condition, we also assume that for some (δ0∗, δ
′
∗)
′, Yt is structurally associated with other

variables by

Yt = ξ0∗ + E′tδ∗ +m(Xt) + Ut,

such that for the instrumental variable Zt, E[UtZt] = 0 and the order condition hold for structural model estimation,

viz., Zt ∈ Rp with p > k + 2. For notational simplicity, we also divide the parameter vector δ∗ into (ξ1∗,η
′
∗)
′ such that

E′tδ∗ = ξ1∗Xt + D′tη∗.
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We next consider a model specified to test the functional form of m(·). In particular, we assume that the empirical

researcher is interested in testing the linear structure between Yt and Xt. To address this, we construct a model attached

by a power transform of Xt as follows:

M :=
{
mt(ω) := Yt − ξ0 −E′tδ − βX

γ
t : ω := (ξ0, δ

′, β, γ)′ ∈ Ω ⊂ Rk+4
}

and estimate the unknown parameters using the GMM method, assuming the following quadratic distance function:

dn(ω) := (Y − βX(γ)−Vς)′ZMnZ
′(Y − βX(γ)−Vς),

where Y := (Y1, . . . , Yn)′; X(γ) := (Xγ
1 , . . . , X

γ
n)′; Vt := (1,E′t)

′; V := [V′1, . . . ,V
′
n]′; Z := [Z′1, . . . ,Z

′
n]′;

ς := (ξ0, δ
′)′; and Mn is a weighting matrix. That is, the GMM estimator is obtained by minimizing the quadratic

distance function: ω̂n := arg minω∈Ω dn(ω). We also let ω̃n := arg minω∈Ω dn(ω) such that β = 0. If β = 0, γ is

a placeholder, with ω̃n estimating the linear structure between Yt and Xt. Note thatM could be misspecified under a

general nonlinear structure between Yt and Xt. As Hall and Inoue (2003) have pointed out, in such a case, the power

function inM estimated using the GMM method is an approximation for m(·), and so the limit behavior of the estimated

parameter can be different from that of a correctly specified model. However, M is correctly specified for the linear

structure between Yt and Xt. We therefore impose the following hypothesis:

H0 : E[mt(ξ0, δ, β∗, γ∗)Zt] = 0 for some δ and ξ0, for β∗ = 0 or γ∗ = 0 or 1.

We may further partitionH0 into the following sub-conditions:

H0,1 : β∗ = 0, H0,2 : γ∗ = 0, or H0,3 : γ∗ = 1

to generate a linear structure between Yt and Xt and thus hypothesize the researcher’s interest. The negation of H0 is an

alternative hypothesis: H1 : β∗ 6= 0, γ∗ 6= 0 and γ∗ 6= 1. For simplicity, we let Ω0 := {ω ∈ Ω : β = 0, γ = 0, or γ =

1} and Ω1 := Ω \Ω0 be the null and alternative parameter spaces, respectively.

Testing the null hypothesis involves nonstandard problems. Null hypothesis H0 is associated with an identification

problem. If β∗ = 0, γ∗ is unidentified, and Davies’s (1977, 1987) identification arises underH0,1. That is, γ∗ is identified

only when β∗ 6= 0, and by this, a standard test does not follow a standard chi-squared distribution underH0,1. In general,

a Gaussian process is involved with the null limit distribution when Davies’s (1977, 1987) identification problem arises.

Similarly, if γ∗ = 0, only ξ0∗ + β∗ is identified, implying that ξ0∗ and β∗ are not separately identified, and Davies’s

(1977, 1987) identification problem arises in a different manner underH0,2 fromH0,1. Likewise, Davies’s (1977, 1987)

identification problem arises under H0,3, implying that neither ξ1∗ nor β∗ is separately identified. Thus, we find three

composite Davies’s (1977, 1987) identification problems with H0. A proper testing methodology should tackle all
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these separate identification problems using a single test. We call this the trifold identification problem following Baek,

Cho, and Phillips (2015). By the trifold identification problem, it becomes challenging to test the linear structure via

Wald’s (1943) test principle. As Baek, Cho, and Phillips (2015) pointed out, when a multifold identification problem

is associated with the null hypothesis, the standard Wald-test can have an unbounded null limit distribution, because a

parameter value belonging to the null parameter space constrained by one of the sub-null hypotheses may belong to the

alternative parameter space characterized by another sub-alternative hypothesis.

However, we apply the LR-test principle to overcome the multiple identification parameter problem. Specifically, we

compare the GMM distances obtained under H0 and H1 to test the linearity hypothesis. The DD-test statistic is defined

as follows:

Dn := n−1 {dn(ω̃n)− dn(ω̂n)} .

Note thatM approximates the unknown functional form of m(·) by the power transform, and the DD-test exploits this

approximation to gain the test statistic marginal power; this is exactly the same motivation as that of the QLR-test. The

DD- and QLR-tests are defined similarly but have different features. The GMM distance is defined by the weighted

distance of the orthogonality conditions, and not by the prediction error, to obtain a null limit distribution different from

that of the QLR-test.

Before examining the asymptotic behaviors of the DD-test under the different hypotheses, we formalize the above

DGP and model conditions along with others as collected in the following assumption:

Assumption 1. (i) {(E′t,Z′t, Ut)′ := (Xt,D
′
t,Z
′
t, Ut)

′ ∈ R2+k+p : t = 1, 2, . . .} (k and p ∈ N and p > k + 2) is an

SSE sequence such that Xt has a positive value with probability 1;

(ii) for each j, {Zt,jUt,Ft} is an adapted mixingale of size−1, whereZt,j is the jth-row element, andFt is the smallest

σ-field generated by {Ut,Zt,Et, Ut−1,Zt−1,Et−1, . . .};

(iii) (a) for each j, E[Z4
t,j ] <∞ and E[U4

t ] <∞;

(b) for each j, E[D2
t,j ] <∞ and E[m2(Xt)] <∞, where Dt,j is the jth-row element of Dt;

(iv) (a) var(n−1/2Z′U) converges to Σ as n→∞;

(b) var(n−1/2Z′U) is PD uniformly in n, and Σ is finite and PD;

(v) (a) Mn converges to M0, as n→∞;

(b) Mn is symmetric and PD uniformly in n, and M0 is finite and PD. �

Assumption 2. (i) The structure between Yt and Et is specified asM := {mt(ω) := Yt − ξ0 − E′tδ − βX
γ
t : ω :=

(ξ0, δ
′, β, γ)′ ∈ Ω ⊂ Rk+4}, where Ω := Ξ ×∆ × B × Γ such that Ξ, ∆, B, and Γ := [γ, γ] are convex and

compact in R, Rk+1, R, and R, respectively; 0 is an interior element of B; and 0 and 1 are interior elements of Γ;

(ii) for the measurable functions m(·) and (ξ0∗, δ
′
∗)
′ ∈ R2+k, Yt = ξ0∗ + E′tδ∗ +m(Xt) + Ut; and

(iii) E[VtZ
′
t] and

∑n
t=1 VtZ

′
t have full row ranks uniformly in n, where Vt := (1,E′t)

′. �

Assumption 3. An SSE sequence {Mt} exists such that
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(i) E[M4
t ] <∞ and supγ∈Γ |X

γ
t | ≤Mt; and

(ii) E[X4
t ] <∞ and E[L4

t ] <∞, where Lt := log(Xt). �

Assumption 4. (i) For all ε > 0, E[Gt(·)Z′t]M0E[ZtGt(·)′] is PD uniformly on Γ(ε), where Gt(γ) := (Xγ
t ,V

′
t)
′

and Γc(ε) := {γ ∈ Γ : |γ| ≥ ε or |γ − 1| ≥ ε};

(ii) E[Gt,0Z
′
t]M0E[ZtG

′
t,0] is PD, where Gt,0 := (Lt,V

′
t)
′; and

(iii) E[Gt,1Z
′
t]M0E[ZtG

′
t,1] is PD, where Gt,1 := (XtLt,V

′
t)
′. �

Remarks.

(a) Assumptions 1, 2, and 3 impose the DGP, model, and moment conditions, respectively. Assumption 1 is considered

throughout this study, whereas Assumptions 2 and 3 are considered only when extending the linear structure testing

to polynomial structures. In addition, Assumption 4 lets ω̂n be asymptotically non-degenerate even underH0.

(b) As a diagnostic procedure to check the nonsingular matrix condition in Assumption 4, we can apply rank tests

available in the literature (e.g., Bartlett, 1947; Cragg and Donald, 1996; Robin and Smith, 2000). For example,

for each γ ∈ Γc(ε) if we let rank(E[Gt(γ)Z′t]) = 2 + k be the null hypothesis of Bartlett’s (1947) ’s test and

the null is rejected for every γ ∈ Γc(ε), it becomes a signal to satisfy Assumption 4(i). Likewise, we can check

Assumptions 4 (ii and iii) by applying this diagnostic procedure.

(c) The DGP and moment conditions are not sufficient to apply the functional central limit theorem (FCLT) as in Baek,

Cho, and Phillips (2015). However, the DGP and moment conditions of this study are regular conditions to apply

Scott’s (1973) mixingale central limit theorem (CLT) to n−1/2
∑

ZtUt. We can obtain the DD-test statistic null

limit distribution by applying the CLT differently from Baek, Cho, and Phillips (2015), as detailed below.

(d) The DGP condition allows for a dynamic misspecification. If {Ut,Ft} forms a martingale different array (MDA),

var(n−1/2Z′U) would be identical uniformly in n.

(e) For power transformation,Xt needs to be positive. Otherwise,Xt would be transformed to other positive variables,

but we can allow them to beXt here. Since this transformation does not substantially modify our theory, we simply

assume that Xt has a positive value.

(f) AlthoughM supposes a fixed form of model, the model condition can be flexibly modified without difficulty. As

an example, if the intercept term is not needed for model construction, we can simply remove it fromM, and the

DD-test can be applied in parallel to the presence of the intercept term. For such a case, the rank condition needs

to be modified to p > k + 1.

(g) The interior parameter condition for β∗ in Assumption 2 removes the asymptotic chance for ω̂n to exist as a set.

If zero is on the boundary of the parameter space, β̂n can be asymptotically zero with non-negligible probability

under the null. For such a case, any γ ∈ Γ becomes γ̂n as it is a placeholder, so that ω̂n can exist as a set. Instead,

we impose the zero interior parameter space condition to make β̂n be zero with probability converging to zero

and remove the asymptotic probability for ω̂n to exist as a set. Similarly, we do not impose the parameter space

condition for γ so that γ̂n is 0 or 1 with probability converging to zero by the same rationale.
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(h) Although we here focus on testing the structural linearity, our methodology can be used to test the linearity hypoth-

esis of the exogenous variable. Instead of βXγ
t , we may modifyM by introducing the power transformation of the

exogenous variable and test its linearity hypothesis by the methodology described in Section 2.3. �

2.3 Testing Structural Linearity

We now examine how the trifold identification problem is associated with the null limit distribution. For this purpose,

we first define three tests denoted below as D(β=0)
n (ε), D(γ=0)

n , and D(γ=1)
n that test the three sub-conditions H0,1, H0,2,

and H0,3, respectively; and we next derive their limit approximations under their respective sub-condition. We finally

demonstrate how the null approximations are interrelated with each other, that we exploit to obtain the limit distribution

of Dn underH0.

In our first step, we examine the limit approximation under H0,1 : β∗ = 0. Note that since γ∗ is not identified under

H0,1, we conduct GMM optimization with respect to γ in a later stage compared to for any other parameter. That is, we

obtain minγ minβ minς dn(ω). If we let Q1 := Z̈(I−Z̈′V(V′Z̈Z̈′V)−1V′Z̈)Z̈′, Z̈ := ZM
1/2
n , and U := (U1, . . . , Un)′,

then it follows that

D(β=0)
n (ε) := −infγ∈Γc(ε)infβn

−1{dn(β; γ)− dn(0; γ)} = supγ∈Γc(ε)

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
, (3)

where D(β=0)
n (ε) denotes the DD-test testing H0,1. Here, the γ space is modified from Γ to Γc(ε) and exclude 0 and 1.

If γ = 0 or 1, the model would introduce the identification problems underH0,2 andH0,3 and complicate the derivation.

We relax this restriction, as demonstrated below, to derive the limit distribution underH0.

Thus far, we provide the limit distribution of D(β=0)
n (ε) underH0,1:

Lemma 1. Given Assumptions 1, 2, 3, 4, and H0,1, for each ε > 0, we have D(β=0)
n (ε) ⇒ supγ∈Γc(ε)Z2

1 (γ), where for

each ε > 0, {Z1(γ) : γ ∈ Γc(ε)} is a zero mean Gaussian process such that for each pair (γ, γ′), E[Z1(γ)Z1(γ′)] =

ρ1(γ, γ′) := κ1(γ, γ′)/{σ2
1(γ)σ2

1(γ′)}1/2, κ1(γ, γ′) := E[Xγ
t Z̃′t]J1Σ̃J1E[Z̃tX

γ′

t ], σ2
1(γ) := E[Xγ

t Z̃′t]J1E[Z̃tX
γ
t ],

Z̃t := M
1/2
0 Zt, Σ̃ := M

1/2
0 ΣM

1/2
0 , and J1 := I− E[Z̃tV

′
t](E[VtZ̃

′
t]E[Z̃tV

′
t])
−1E[VtZ̃

′
t]. �

Remarks.

(a) Although Lemma 1 represents the null limit distribution as a Gaussian stochastic process function, the associated

Gaussian process is essentially the product of a deterministic γ function and a multivariate normal random variable.

If for each γ, Z̃1(γ) := π1(γ)′U , where π1(γ) := J1E[Z̃tX
γ
t ]/σ2

1(γ)1/2 and U ∼ N(0, Σ̃), then the covariance

kernel structure of Z̃1(·) is identical to that of Z1(·), implying that the nonlinearity of Z1(·) stems from π1(·).

(b) The covariance kernel of Z1(·) depends on the form of Mn. If Mn consistently estimates Σ−1, then Σ̃ = I and

κ1(γ, γ′) = E[Xγ
t Z̃′t]J1E[Z̃tX

γ′

t ], because J1 is an idempotent matrix, and so for each γ, ρ1(γ, γ) = 1, and

ρ1(γ, γ′) =
κ1(γ, γ′)√

κ1(γ, γ)
√
κ1(γ′, γ′)

.
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(c) The rank condition in Assumption 2(iii) should be linked to J1. If E[VtZ
′
t] had been a square matrix with k = p,

J1 = 0, so that we cannot test the hypothesis by the DD-test statistic. The condition on the relationship between

p and k in Assumption 1(i), i.e., p > k + 2, implies that the DD-test statistic is applicable only to overidentified

models. �

We next examine the limit distribution of Dn under H0,2. If γ∗ = 0, ξ0∗ and β∗ are not separately identifiable. We

therefore first assume that β∗ is unidentified, to obtain the null approximation, then reverse the order by allowing ξ0∗ to be

unidentified, and finally compare them under H0,2. Since β∗ (resp. ξ0∗) is not identified, we optimize dn(·) with respect

to β (resp. ξ0) in a later stage compared to any other parameter, to obtain

D(γ=0;β)
n := − inf

β
inf
γ
n−1{dn(γ;β)− dn(0;β)} = sup

β

1

n

{C′0Q1U}2

C′0Q1C0
+ oP(1), (4)

D(γ=0;ξ0)
n := − inf

ξ0
inf
γ
n−1{dn(γ; ξ0)− dn(0; ξ0)} = sup

ξ0

1

n

{C′0Q1U}2

C′0Q1C0
+ oP(1) (5)

by applying a second-order Taylor expansion, where C0 := [L1, . . . , Ln]′, and D(γ=0;β)
n (resp. D(γ=0;ξ0)

n ) denotes the

DD-test designed to testH0,2 by treating β∗ (resp. ξ0∗) as an unidentified parameter. Here, the distance functions dn(·;β)

and dn(·; ξ0) in (4) and (5) are interpreted as functions of γ when optimizing them with respect to γ while keeping β and ξ0

as nuisance parameters, respectively. In addition, the right-hand side (RHS) parameters of (4) and (5) are asymptotically

free of β and ξ0, respectively, under our regularity conditions. Thus, the maximization with respect to β and ξ0 in (4)

and (5) respectively is an innocuous process relative to the null limit distribution. Furthermore, the same asymptotic

approximations in (4) and (5) imply the uniquely determined limit distribution of Dn irrespective of the optimization

order. We let D(γ=0)
n denote the DD-test designed to test H0,2 and contain the null limit distribution in the following

lemma:

Lemma 2. Given Assumptions 1, 2, 3, 4, and H0,2, D(γ=0)
n = {C′0Q1U}2/{nC′0Q1C0} + oP(1)

A∼ Z2
0 , where Z0

A∼

N(0, κ2
0) and κ2

0 := E[LtZ̃
′
t]J1Σ̃J1E[Z̃tLt]/E[LtZ̃

′
t]J1E[Z̃tLt]. �

Remarks.

(a) The null limit distribution in Lemma 2 is a noncentral chi-square distribution, unlike the limit distribution under

H0,1. This is mainly because the null limit approximations in (4) and (5) are free of nuisance parameters β and ξ0,

respectively.

(b) As for the case underH0,1, if M0 = Σ−1, then κ2
0 = 1, and so D(γ=0)

n
A∼ X 2

1 underH0,2.

(c) The weak limits of the DD-test statistic under H0,1 and H0,2 are not independent. We below examine their joint

distribution along with the weak limits underH0,3. �

Next, we examine the limit distribution ofDn underH0,3 : γ∗ = 1. The process is parallel to that underH0,2. That is,

if γ∗ = 1, ξ1∗ and β∗ are not separately identifiable. We therefore treat one of them as unidentified and identify the other

one similarly to that underH0,2. If we treat β∗ or ξ1∗ as the unidentified parameter, the corresponding null approximation
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is obtained as

D(γ=1;β)
n := − inf

β
inf
γ∈Γ

n−1{dn(γ;β)− dn(1;β)} = sup
β

1

n

{C′1Q1U}2

C′1Q1C1
+ oP(1), (6)

D(γ=1;ξ1)
n := − inf

ξ1
inf
γ
n−1{dn(γ; ξ1)− dn(1; ξ1)} = sup

ξ0

1

n

{C′1Q1U}2

C′1Q1C1
+ oP(1) (7)

by applying a second-order Taylor approximation to dn(·), where for j = 1, 2, ..., we let Cj := [Xj
tL1, . . . , X

j
nLn]. Here,

D(γ=1;β)
n (resp. D(γ=1;ξ1)

n ) denotes the DD-test designed to testH0,3 obtained by treating β∗ (resp. ξ1∗) as the unidentified

parameter, letting dn(·) be optimized with respect to β (resp. ξ1) in the final stage, and interpreting dn(·;β) and dn(·; ξ1)

in (6) and (7) as functions of γ when optimizing them with respect to γ while keeping β and ξ1 as nuisance parameters,

respectively. As earlier, the RHS parameters of (6) and (7) are asymptotically free of β and ξ1, respectively, under our

regularity conditions, so that maximization with respect to β and ξ0 in (6) and (7) respectively becomes innocuous in

obtaining the null limit distribution. Furthermore, the null approximation in (6) is identical to that in (7), implying that

the limit distribution under H0,3 is uniquely obtained irrespective of the optimization order. We let D(γ=1)
n denote the

DD-test designed to testH0,3 and contain its null limit distribution in the following lemma:

Lemma 3. Given Assumptions 1, 2, 3, 4, and H0,3, D(γ=1)
n = {C′1Q1U}2/{nC′1Q1C1} + oP(1)

A∼ Z2
1 , where Z1 ∼

N(0, κ2
1) and κ2

1 := E[CtZ̃
′
t]J1Σ̃J1E[Z̃tCt]/E[CtZ̃

′
t]J1E[Z̃tCt]. �

Finally, we derive the limit distribution of Dn under H0 using all the three null approximations under H0,1, H0,2,

andH0,3. Note that regular relationships exist among the null approximations. For this examination, we first assume that

Nn(γ) := {X(γ)′Q1U}2 and Dn(γ) := nX(γ)′Q1X(γ). These are the numerator and denominator of (3) respectively,

and we examine the probability limits when γ converges to 0 or 1, to thereby remove the restriction to Γ by ε. Note that

plimγ→0Nn(γ) = 0 and plimγ→0Dn(γ) = 0, because γ → 0, implying that the probability limit of the ratio must be

obtained by the L’Hôpital rule. We observe the same aspect when γ converges to 1. The following lemma contains the

probability limits of N (j)
n := (∂j/∂γj)Nn(γ) and D(j)

n := (∂j/∂γj) Dn(γ) for j = 1 and 2:

Lemma 4. Given Assumptions 1 and 2,

(i) plimγ→0N
(1)
n (γ) = 0 and plimγ→0D

(1)
n (γ) = 0;

(ii) plimγ→1N
(1)
n (γ) = 0 and plimγ→1D

(1)
n (γ) = 0;

(iii) plimγ→0N
(2)
n (γ) = 2{C′0Q1U}2 and plimγ→0D

(2)
n (γ) = 2nC′0Q1C0; and

(iv) plimγ→1N
(2)
n (γ) = 2{C′1Q1U}2 and plimγ→1D

(2)
n (γ) = 2nC′1Q1C1. �

By Lemma 4, the L’Hôpital rule must be applied twice for the ratio probability limits. That is,

plimγ→0

Nn(γ)

Dn(γ)
=
{C′0Q1U}2

nC′0Q1C0
and plimγ→1

Nn(γ)

Dn(γ)
=
{C′1Q1U}2

nC′1Q1C1
, (8)
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that are in fact the null limit approximations given in Lemmas 2 and 3. This also implies that

D(β=0)
n := sup

γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
≥ max

[
{C′0Q1U}2

nC′0Q1C0
,
{C′1Q1U}2

nC′1Q1C1

]
= max

[
D(γ=0)
n ,D(γ=1)

n

]
+ oP(1).

Therefore, the biggest GMM distance is obtained under H0,1 without restricting Γ by ε. This implies that the limit

distribution of the DD-test underH0 must be represented as a functional of Z1(·) derived underH0,1. We summarize the

key result in the following theorem:

Theorem 1. Given Assumptions 1, 2, 3, 4, and H0, Dn ⇒ supγ∈ΓZ2
1 (γ), where Z1(0) and Z1(1) are defined as the

limits of D(γ=0)
n and D(γ=1)

n , respectively. �

If γ is restricted to either 0 or 1 inM, it becomes a linear model, so that the DD-test becomes zero, implying that the

null limit distribution of the DD-test without the restriction cannot be achieved by letting γ = 0 or 1, mainly because the

DD-test must be always greater than zero. We therefore simply let Z2
1 (0) and Z2

1 (1) be the weak limits obtained from

the right sides of (8) so that the null limit distribution of the DD-test is not affected by this selection and Z2
1 (·) becomes

continuous on Γ, enabling us to apply the maximal principle for the existence of supγ∈ΓZ2
1 (γ).

The null limit distribution of the DD-test can be obtained through simulation. If π̂n,1(·) and Σ̂n consistently estimate

π1(·) and Σ̃, respectively, the limit distribution of supγ∈Γ(π̂n,1(γ)′Û)2 would estimate the null limit distribution of

Dn, provided that Û ∼ N(0, Σ̂n). Therefore, the empirical researcher can apply Hansen’s (1996) weighted bootstrap

and obtain the asymptotic critical values as detailed in Section 4 (see also Cho et al., 2011). Here, when computing

supγ∈Γ(π̂n,1(γ)′Û)2, it would be more straightforward to apply the grid search method than applying an optimization

algorithm, because the dimension of γ is one.

2.4 Testing for Structural Nonlinearity

The DD-test has a consistent and nontrivial local power against general nonlinearity when valid instrumental variables

are employed, to lead to omnibus power. To examine this omnibus power, we assume the possibility of no (β, γ) such

that m(Xt) = βXγ
t with probability 1, and examine the omnibus power property.

For this, we first derive the GMM distance limits under the null and alternative models and then examine their

difference. We examine the null distance at the limit, that we denote as d0 := plimn→∞n
−2dn(ω̃n), and obtain it by the

ergodic theorem:

d0 = min
ς

E[(Yt −V′tς)Z
′
t]M0E[(Yt −V′tς)Zt] = E[m(Xt)Z̃

′
t]J1E[Z̃tm(Xt)].

Here, if ς0 is the argument for d0, then ς0 = ς∗ + (E[VtZ̃
′
t]E[Z̃tV

′
t])
−1E[VtZ̃

′
t]E[Z̃tm(Xt)], implying that the GMM

estimator is asymptotically biased, as pointed out by Hall and Inoue (2003). We then derive the alternative GMM distance
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at the limit: for each γ, if d(γ) := minς,β plimn→∞n
−2dn(ς, β, γ),

d(γ) = min
ς,β

E[(Yt −V′tς − βX
γ
t )Z′t]M0E[Zt(Yt −V′tς − βX

γ
t )] = E[m(Xt)Z̃

′
t]J1(γ)E[Z̃tm(Xt)],

where for each γ ∈ Γ, J1(γ) := I − E[Z̃tVt(γ)′](E[Vt(γ)Z̃′t]E[Z̃tVt(γ)′])−1E[Vt(γ)Z̃′t], and Vt(γ) := (V′t, X
γ
t ) =

(1,E′t, X
γ
t ), so that we obtain

d0 − d(γ) =
{E[m(Xt)Z̃

′
t]J1E[Z̃tX

γ
t ]}2

E[Xγ
t Z̃′t]J1E[Z̃tX

γ
t ]

(9)

by some tedious algebra. Note that J1E[Z̃tX
γ
t ] is the projection error of E[Z̃tX

γ
t ] against E[VtZ̃

′
t], and J1 is an idem-

potent matrix, so that {E[m(Xt)Z̃
′
t]J1E[Z̃tX

γ
t ]}2 > 0, unless E[m(Xt)Z̃t] and E[Xγ

t Z̃t] are sub-vectors of E[VtZ̃t].

Therefore, for each γ, d0 − d(γ) > 0. Here, even for γ = 0 or 1, d0 − d(γ) > 0. If γ = 0 or 1, then J1E[Z̃tX
γ
t ] = 0,

because E[Xγ
t Z̃t] is a sub-vector of E[VtZ̃t], so that the RHS of (9) is obtained by the L’Hôpital rule for γ = 0 or 1.

Therefore,

plim
γ→0

d0 − d(γ) =
{E[m(Xt)Z̃

′
t]J1E[Z̃tLt]}2

E[LtZ̃′t]J1E[Z̃tLt]
and plim

γ→1
d0 − d(γ) =

{E[m(Xt)Z̃
′
t]J1E[Z̃tCt]}2

E[CtZ̃′t]J1E[Z̃tCt]
.

Note that the two limits are still strictly positive.

The DD-test gains its power from the difference between d0 and d(·). Note that n−1Dn = d0−infγ∈Γ d(γ)+oP(1) =

supγ∈Γ µ
2
1(γ) + oP(1), where

µ2
1(·) := ρ2(h,g(·)) · (h′h) :=

{h′g(·)}2

{h′h} · {g(·)′g(·)}
· (h′h)

and h := J1E[Z̃tm(Xt)] and g(γ) := J1E[Z̃tX
γ
t ]. Indeed, supγ∈Γ µ

2
1(γ) is strictly positive, to obtain a consistent power

for the DD-test statistic. We include this result in the following theorem:

Theorem 2. Given Assumptions 1, 2, 3, and 4,

(i) if J1E[Z̃tm(Xt)] 6= 0 and there is no (β, γ) such that m(Xt) = βXγ
t with probability 1, then for some γ̃ ∈ Γ,

d(γ̃) ∈ (0, d0) and n−1Dn = d0 − d(γ̃) + oP(1); and

(ii) if for the measurable function s(·), m(Xt) = n−1/2s(Xt) with probability 1, J1E[Z̃ts(Xt)] 6= 0 and there is

no (β, γ) such that s(Xt) = βXγ
t with probability 1, then Dn ⇒ supγ∈Γ{Z1(γ) + ν1(γ)}2, where ν1(·) :=

E[X
(·)
t Z̃t]J1E[Z̃ts(Xt)]/σ1(·). �

Remarks.

(a) For a consistent power, we need to select valid instrumental variables for J1E[Z̃tm(Xt)] 6= 0, as presumed for the

proper application of the DD-test. Note that the relationship between p and k and the rank condition in Assumptions

1(i) and 2(iii), respectively imply J1 6= 0 as remarked below Lemma 1, from which E[Z̃tm(Xt)] 6= 0 is virtually

imposed by the nonzero condition in Theorem 2(i).
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(b) The DD-test draws its consistent power from a factor different from that for the J-test, that directly tests whether or

not E[Z̃tm(Xt)] = 0 and asymptotically rejects the linear structure condition if the instrumental variables are not

valid. In contrast, the DD-test draws its power from the uncentered correlation between h and g(·); this implies

that the J- and DD-tests supplement each other. If the J-test rejects the null but the DD-test does not, the rejection

is highly related to E[Z̃tm(Xt)] 6= 0.

(c) From Theorem 2(i), the DD-test has a consistent power even when the power transform misspecifies the functional

form of m(·). If the power transformation correctly specifies the functional form of m(·), the power obtained con-

sistently is trivial. That is, if for some γ∗ ∈ Γ\{0, 1},m(Xt) = β∗X
γ∗
t , then n−1Dn = β2

∗E[Xγ∗
t Z̃′t]J1E[Z̃tX

γ∗
t ]+

oP(1); this is strictly positive at the limit, implying that Dn has nontrivial asymptotic power.

(d) For an intuitive proof of Theorem 2(i), note that the DD-test does not have an asymptotic power if and only if

ρ(g(·),h) ≡ 0, but this condition is contradictory to the provided condition. Suppose that for each γ, E[Z̃tX
γ
t ] = 0,

and this implies that E[Z̃t|Xt] = 0 from the fact that E[Z̃tX
γ
t ] = ∇τE[exp(γ log (Xt) + τ ′Z̃t)]|τ=0 and

E[exp(γ log(Xt) + τ ′Z̃t)] is a moment generating function of (log(Xt), Z̃
′
t)
′, so that if E[Z̃tX

γ
t ] = 0, then

E[Z̃t| log(Xt)] = 0. Here, log(·) is a measure-preserving transformation, so that E[Z̃t| log(Xt)] = E[Z̃t|Xt].

Therefore, E[Z̃tm(Xt)] = 0 is implied by the law of iterated expectation. Note that it is contradictory to the

requirement that J1E[Z̃tm(Xt)] 6= 0, leading to a nonzero correlation coefficient between h and g(γ) for some γ.

(e) The intuition of the power property in Theorem 2(i) should be straightforward. The DD-test may be comparable

to the specification test in Bierens (1990) that first computes an infinite number of moment conditions and next

chooses the worst moment condition to gain the power. Differently from this, the DD-test first computes the

infinite number of moments given by J1E[Z̃tm(Xt)] and J1E[Z̃tX
(·)
t ] and next gains the power by choosing γ of

J1E[Z̃tX
γ
t ] that best approximates J1E[Z̃tm(Xt)] in terms of the uncentered correlation coefficient.

(f) From Theorem 2(ii), the DD-test has a nontrivial power against a local alternative converging to zero at the rate of

n−1/2. Note that the asymptotic local power can be gained by shifting the locality parameter of Z1(·) by ν1(·), that

is different from 0, as implied by Theorem 2(i). �

2.5 Asymptotic Uniform Inference

The null limit distribution in Theorem 1 can be used to implement the DD-test uniformly on the parameter space. In this

section, we examine this feature by investigating whether the asymptotic size defined as lim supn→∞ supω∗∈Ω Pω∗(Dn >

cvn(α)) is less than or equal to α as examined by Andrews and Cheng (2015) and Elliott, Müller, and Watson (2015) in

their frameworks.

Testing linearity by the DD-test can be applied to testing different hypotheses. Note that Theorem 1 implies that

the null limit distribution is determined by that testing H0,1 : β∗ = 0. Due to this aspect, we focus on the hypothesis

H′0 : β∗ = β0 for the asymptotic size, where β0 is not necessarily equal to zero. We first note that the DD-test can be
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written as

Dn = sup
γ∈Γ

n−1{dn(ξ̃0,n, δ̃n, β0, γ̃n)− dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ)},

where (ξ̂0,n(γ), δ̂n(γ), β̂n(γ)) := arg infξ0,δ,β dn(ω) and (ξ̃0,n, δ̃n, γ̃n) := arg infξ0,δ,γ dn(ω) subject to β∗ = β0. Note

that γ̃n is a placehold if β0 = 0, but it must be estimated, otherwise.

The null limit distribution of the DD-test is obtained under some mild regularity conditions. For this derivation, we

further suppose the following conditions along with the earlier ones:

Assumption 5. (i) {ω ∈ Ω : E[mt(ω)Zt] = 0} has a unique element as an interior element of Ω, provided that

β∗ 6= 0 or γ∗ 6= 0, 1;

(ii) For all ε > 0, E[Gt,2(·)Z′t]M0E[ZtGt,2(·)′] is PD uniformly on Γ(ε), where Gt,2(γ) := (Xγ
t , X

γ
t Lt,V

′
t)
′. �

By Assumption 5(i), the model is identified unlessH0 is supposed.

The derivation of the null limit distribution is facilitated by exploiting the structure of the DD-test. We first note that

dn(ξ̃0,n, δ̃n, β0, γ̃n) = inf
γ∈Γ

[U− β∗(X(γ)−X(γ∗))]
′Q1[U− β∗(X(γ)−X(γ∗))] (10)

underH′0 and

dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ) = [U− β∗(X(γ)−X(γ∗))]
′P(γ)[U− β∗(X(γ)−X(γ∗))], (11)

where P(γ) := Q1 − Q1X(γ)(X(γ)′Q1X(γ))−1X(γ)′Q1. The right sides on (10) and (11) are obtained by first

concentrating the GMM distance with respect to (ξ0, δ) and (ξ0, δ, β), respectively. If we further let H(γ) := J1 −

g(γ)(g(γ)′g(γ))−1g(γ)′ and d(γ) := J1E[Z̃tX
γ
t log(Xt)] and suppose that n−1/2U′Z̈ ⇒ U ∼ N(0, Σ̃) by applying

Assumption 1, it now follows that

Dn ⇒ inf
s

[U − β∗sd(γ∗)]
′J1[U − β∗sd(γ∗)]− inf

s
[U − β∗sd(γ∗)]

′H(γ∗)[U − β∗sd(γ∗)]

= Z2
2 (γ∗) :=

{g(γ∗)
′K(γ∗)U}2

g(γ∗)′K(γ∗)g(γ∗)

under H′0, provided that β0 6= 0, for γ∗ 6= 0, 1. Here, to obtain the weak limit, we used the fact that X(γ) −X(γ∗) =

D(γ∗)(γ−γ∗)+oP((γ−γ∗)) and J1 is idempotent, where we let K(γ∗) := I−d(γ∗)(d(γ∗)
′d(γ∗))

−1d(γ∗)
′, D(γ∗) :=

[D1(γ∗) . . . , Dn(γ∗)]
′ with Dt(γ∗) := Xγ∗

t Lt, and s captures the asymptotic distance measured by
√
n(γ − γ∗). Note

that the null limit distribution is free of β∗. In contrast, if β0 = 0 and/or γ∗ = 0, 1,

Dn = n−1U′Q1U− inf
γ∈Γ

n−1U′P(γ)U = sup
γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
⇒ sup

γ∈Γ

{g(γ)′U}2

g(γ)′g(γ)

underH′0. By letting π1(·) := {g(·)′g(·)}−1/2g(·), note that the consequent limit becomes the same weak limit as given
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in Theorem 1. We contain these null limit distributions in the following theorem.

Theorem 3. Given Assumptions 1, 2, 3, 4, 5, andH′0 : β∗ = β0,

(i) if β0 = 0 and/or γ∗ = 0, 1, Dn ⇒ supγ∈ΓZ2
1 (γ); and

(ii) if β0 6= 0 and γ∗ 6= 0, 1, Dn ⇒ Z2
2 (γ∗) such that Z2(γ∗) ∼ N(0, κ2

2(γ∗)) and κ2
2(γ∗) := g(γ∗)

′K(γ∗)Σ̃K(γ∗)

g(γ∗)/g(γ∗)
′K(γ∗)g(γ∗). �

As a remark to Theorem 3, the null limit distribution in Theorem 3(ii) can also be derived by using the following null

approximation:

Dn =
1

n

{X(γ∗)
′(Q1 −Q1D(γ∗)(D(γ∗)

′Q1D(γ∗))
−1D(γ∗)

′Q1)U}2

X(γ∗)′(Q1 −Q1D(γ∗)(D(γ∗)′Q1D(γ∗))−1D(γ∗)′Q1)X(γ∗)
+ oP(1). (12)

If we apply the CLT or ergodic theorem to the relevant quantities on the RHS of (12), the same null limit distribution is

also obtained as given in Theorem 3(ii).

The null limit distributions in Theorem 3 are obtained by fixing the unknown parameter value, but we can exploit them

to examine the asymptotic size. Note that the GMM distances given by (10) and (11) are influenced by only β∗ and γ∗, so

that we can focus on its parameter space for the asymptotic uniform inference. We separate the parameter space into two

subsets by noting that the null limit distribution depends on whether the model is identified or not. That is, for every ε > 0,

we let B(ε) := {β ∈ B : |β| < ε} and Bc(ε) := B \B(ε). Likewise, we let Γ(ε) := {γ ∈ Γ : |γ| < ε or |γ − 1| < ε}

and Γc(ε) := Γ \ Γ(ε). Note that Υ0 := limε↓0 B(ε) × Γ(ε) collects the null parameter values for (β∗, γ∗) when the

null model is not identified, so that the null limit distribution in Theorem 3(i) is obtained for (β∗, γ∗) ∈ Υ0. On the other

hand, if (β∗, γ∗) ∈ Υc(ε) := Bc(ε)×Γc(ε), the null limit distribution in Theorem 3(ii) applies, so that we can handle the

identified model case by Assumption 5(ii). We now provide the results on the asymptotic size in the following theorem:

Theorem 4. Given Assumptions 1, 2, 3, 4, 5, andH′0 : β∗ = β0,

(i) lim supn→∞ sup(β∗,γ∗)∈Υ0
Pω∗(Dn > cv1(α)) = α, where cv1(α) := inf{x ∈ R+ : F1(x) ≥ 1 − α} and for

every x ≥ 0, F1(x) := P(supγ∈ΓZ2
1 (γ) ≤ x);

(ii) for any ε > 0, lim supn→∞ sup(β∗,γ∗)∈Υc(ε) Pω∗(Dn > cv2(α)) = α, where cv2(α) := inf{x ∈ R+ : F2(x) ≥

1−α} and for every x ≥ 0, F2(x) := P(Z2
2 (γ∗) ≤ x); and

(iii) lim supn→∞ sup(β∗,γ∗)∈B×Γ Pω∗(Dn > cv(α)) ≤ α, where cv(α) := cv1(α) if (β∗, γ∗) ∈ Υ0; and cv(α) :=

cv2(α), otherwise. �

Remarks.

(a) Theorem 4(i) directly follows from Theorem 3(i) as all parameter values in Υ0 characterize the linear model and

Theorem 4(i) obtains the null limit distribution under the linear model assumption.

(b) We prove Theorem 4(ii) in the Appendix by proving that this Theorem 3(ii) holds uniformly on Γc(ε) for any ε > 0,

and from this, we derive the null weak limit of the DD-test indexed by β∗ and γ∗ as a functional of a Gaussian

process defined on the parameter space, so that for each ω∗, it follows that Pω∗(Dn > cv2(α)) = α.
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(c) Despite the asymptotic result in Theorem 4(ii), it does not necessarily imply that the empirical rejection rate of the

DD-test is equally performing irrespective of the value of (β∗, γ∗). In Section 4.2, we demonstrate by simulation

that for finite n, the empirical rejection rate of the DD-test can be different from α, depending on whether β∗ is

close to 0 and/or γ∗ is close to 0 or 1.

(d) Theorem 4(iii) is obtained by combining the results in Theorems 4(i and ii). �

2.6 Weak Instrumental Variables

Many empirical studies often estimate the model using both strong and weak instrumental variables (e.g., Angrist and

Keueger, 1991). In this section, we examine the influence of weak instrumental variables to the DD-test. As it turns out,

the null limit distribution of the DD-test is virtually determined by strong instrumental variables.

For this examination, we slightly generalize the earlier assumption. We first partition the instrumental variable Zt

into St ∈ Rps and Wt ∈ Rpw such that Zt ≡ (S′t,W
′
t)
′ and p ≡ ps + pw. Here, St and Wt denote strong and weak

instrumental variables, respectively. The earlier discussion in Section 2.3 assumes that pw = 0, so that Zt = St. Due to

the presence of the weak instrumental variable Wt, it is not valid to suppose Assumption 2(iii) any longer. We therefore

modify it into the following assumption:

Assumption 6. (i) Zt ≡ (S′t,W
′
t)
′, where St ∈ Rps and Wt ∈ Rpw ;

(ii) E[VtS
′
t] and

∑n
t=1 VtS

′
t have full column ranks uniformly in n, respectively; and

(iii) Wt = n−1/2µw + W0t such that
∑n

t=1 W0tVt = OP(
√
n). �

Note that Assumption 6(iii) implies that E[VtW
′
t] = n−1/2E[Vt]µ

′
w, so that the influence of Wt to Vt reduces to zero

as n tends to infinity at the rate of n−1/2, by which we desire to capture the feature of a weak instrumental variable.

Given this, we derive the null limit distribution in parallel to the null limit distribution in Theorem 1. Note that the

finite sample analog of the DD-test is given as

Dn = sup
γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)

underH0. Each component on the right side has the following limit behavior:

(i) n−1X(·)′Z̈ = n−1[X(·)′S̈,X(·)′Ẅ] = [E[X
(·)
t S̃t],0

′
1×pw ] + oP(1) uniformly on Γ, where S̈ and S̃t are such that

[S̈,Ẅ] = [S,W]M
1/2
n and [S̃′t,W̃

′
t]
′ := M

1/2
0 [S′t,W

′
t]
′;

(ii) n−1/2U′Z̈ = n−1/2[U′S̈,U′Ẅ] ⇒ [U ′s,U ′w] =: U ′, where Us and Uw denote the weak limits of n−1/2U′Z̈

driven by the strong and weak instrumental variables, respectively; and

(iii) n−1V′Z̈ = n−1[V′S̈,V′Ẅ] = [E[VtS̃
′
t],0(2+k)×pw ] + oP(1).

As proving these is elementary, we do not separately derive these limits in the Appendix.

The null limit distribution can be obtained by combining the separately obtained limits according to the sample analog

of the DD-test. We contain it in the following theorem:
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Theorem 5. Given Assumptions 1, 2(i, ii), 3, 4, 6, andH0, if ps > 2+k,Dn ⇒ supγ∈ΓZ2
s (γ), whereZs(·) := πs(·)′Us,

πs(·) := JsE[X
(·)
t S̃t]/{E[X

(·)
t S̃′t]JsE[S̃tX

(·)
t ]}1/2 with Js := Ips − E[S̃tV

′
t](E[VtS̃

′
t]E[S̃tV

′
t])
−1E[VtS̃

′
t]. �

Remarks.

(a) Theorem 5 implies that the null limit distribution of the DD-test is virtually determined by the strong instrumental

variables. The weak instrumental variables may affect the null limit distribution through Mn if the empirical

researcher selects the weighting matrix to influence M0 through the weak instrumental variables. Otherwise, the

null limit distribution is identical to that given in Theorem 1.

(b) Note that Js is not well defined if E[VtS̃
′
t]E[S̃tV

′
t] is singular. Given that E[VtS

′
t] is a full-column rank matrix,

Theorem 5 avoids having this singular matrix problem by supposing that ps > 2 + k. From this aspect, the DD-

test can still be successfully exploited if the number of strong instrumental variables is greater than the number of

explanatory variables. �

3 Extension to Testing the Polynomial Model Hypothesis

3.1 Motivation and Model

We believe that the empirical researcher would approximate the unknown functional form of m(·) using the polynomial

model specified as

Mq :=
{
mt,q(ω

(q)) := Yt −X′t,qξ
(q) −D′tη − βX

γ
t : ω(q) ∈ Ω(q) ⊂ Rk+q+3

}
,

where ω(q) := (ξ(q)′,η′, β, γ)′, Xt,q := (1, Xt, X
2
t , . . . , X

q
t )′, ξ(q) := (ξ0, ξ1, . . . , ξq)

′, and k and q ∈ N. As earlier, we

assume that for some ω(q)
∗ ∈ Ω(q), Yt = X′t,qξ

(q)
∗ + D′tη∗ + m(Xt) + Ut such that E[ZtUt] = 0, and Xt and Dt are

endogenous and exogenous variables respectively. Note that this structure generalizes the linear structure in Section 2. If

q = 1, thenMq is identical toM, whereas the structural equation is possibly nonlinear for q > 1.

In this section, we extend the linear structure testing condition to testing a polynomial structure. Here, a sequential

testing procedure can be used to estimate a nonlinear polynomial structure consistently.

The main aim of sequential testing is to estimate a parsimonious structural model. Note that semi/nonparametric sieve

estimation exploits as many sieve bases as the sample size allows and leads to possibly unnecessary estimation errors for

the estimator. A sequential testing procedure is a machinery process to avoid unnecessary estimation error.

The motivation of Mq comes from estimating a reduced-form equation through sieve approximation. Each poly-

nomial term forms a sieve basis, with the unknown reduced-form equation well known to be approximated arbitrarily

well through a polynomial function by increasing its degree. Another standard method is to estimate the unknown sieve

estimation degree using information criteria (e.g., Chen and Liao, 2014). Cho and Phillips (2018) apply the sequential

testing procedure based on the QLR-test statistic to the polynomial model and find that it can consistently estimate the
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nonlinear reduced-form equation.

We apply the sequential testing procedure in Cho and Phillips (2018) to the nonlinear structure using the DD-test.

Since the structural form of m(·) is unknown, the sieve estimation motivates to approximate m(·) using a higher-degree

polynomial function. If the DD-test does not reject the high-degree polynomial model, the sequential testing procedure

would take it as m(·) or its close approximation, enabling the researcher to develop an economic theory consistent with

the empirical estimate obtained using the sequential testing procedure.

Another motivation to use sequential testing stems from the MSC developed by Andrews (1999). We discuss this

motivation by focusing on the Bayesian-type MSC among others and relating it to the sequential testing procedure. The

Bayesian-type MSC is defined as BCn,q := J̄n,q − (p − k − q − 1) log(n)/n, where J̄n,q := n−1Jn,q and Jn,q is the

J-test statistic designed to test the qth-degree polynomial structural equation such that q = 1, 2, . . . , q̄ < ∞. The MSC

selects the polynomial model with the smallest value of BCn,q for q = 1, 2, . . . , q̄. If q∗ < q̄, Andrews (1999) shows

that the Bayesian-type MSC asymptotically selects the qth
∗ -degree polynomial model. The same result can be rephrased

in terms of

∆BCn,q := BCn,q+1 −BCn,q = J̄n,q+1 − J̄n,q +
1

n
log(n)

under some regularity conditions. If q ≥ q∗, plimn→∞∆BCn,q = 0, because the probability limits of J̄n,q+1 and

J̄n,q are identical since the qth-degree polynomial model is nested in a higher-degree polynomial model. Thus, if

limn→∞ P(∆BCn,q < 0) = 1 for every q < q∗, then q∗ must be the smallest q among the qs, such that plimn→∞∆BCn,q

is zero. From this feature, we can consistently estimate q∗ by sequentially testing whether plimn→∞∆BCn,q is less than

or equal to 0 from q = 1 to q = q̄ until we cannot reject the hypothesis that plimn→∞∆BCn,q = 0.

We design our sequential testing procedure to ensure the undergoing supposition. The procedure using ∆BCn,q

would work properly if limn→∞ P(∆BCn,q < 0) < 1 holds for every q < q∗. Otherwise, the procedure would fail to

estimate q∗ consistently. We thus avoid this fallacy by replacing ∆BCn,q with the DD-test statistic. The DD-test has

omnibus power, implying that for every q < q∗, limn→∞ P(Dn,q < 0) < 1, where we let Dn,q be the DD-test statistic

testing the q-th degree polynomial hypothesis, as formally defined below. Therefore, the fallacy probability becomes

negligible as n increases.

The sequential testing procedure also tackles the data snooping bias that arises from testing multiple hypotheses. As

pointed out by Hosoya (1989) and Cho and Phillips (2018) among others, a sequential testing procedure needs to test from

the smallest hypothesis to bigger ones. Otherwise, it fails to control type-I error consistently, leading to a data snooping

bias. We therefore start from testing a linear model hypothesis and increase the polynomial degree to the second degree

in case we reject the linear model. In this manner, we continue increasing the degree one by one until we fail to reject the

null model, enabling us to test the polynomial model hypothesis in an inclusive manner, and by this, we can eliminate a

data snooping bias asymptotically. In addition, we also design our testing procedure to estimate q∗ consistently by letting

the level of significance depend on n. If a sequential testing procedure is combined with a constant level of significance,

α say, it estimates q∗ inconsistently with an asymptotic probability for the estimated polynomial degree to differ from q∗
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being equal to α. We therefore let the level of significance level converge to zero as n increases, that lets the estimated

degree converge to q∗ in probability. We discuss this more specifically below. For this, we first examine the qth-degree

polynomial model testing and then apply the sequential testing procedure to estimate the polynomial structure.

3.2 Inference Using the DD-Test

We assume that the empirical researcher is testing whether the qth-degree polynomial model is adequate or not for the

nonlinear structure by letting the null model be the qth-degree polynomial function.

The testing procedure using Mq is similar to that using M. Note that Mq can be transformed into the qth-degree

polynomial model in q + 2 different ways, as with the linear model:

H′′0,1 : β∗ = 0, H′′0,2 : γ∗ = 0, · · · , H′′0,q+1 : γ∗ = q − 1, or H′′0,q+2 : γ∗ = q.

Since any of these hypotheses would generate the qth-degree polynomial model, we treat them as the sub-hypotheses of

H′′0 := ∪q+2
s=1H′′0,s, that is now the null hypothesis of this section. Each sub-hypothesis has its own identification problem:

γ∗ is not identified under H′′0,1; for s = 0, 1, . . . , q, β∗ and ξs,∗ are not separately identified under H′′0,s+2. This forms a

multifold identification problem that generalizes the trifold identification problem in Section 2.3.

We then use the DD-test to overcome the multifold identification problem. For this, we define the DD-test as

Dn,q := n−1{dn(ω̃(q)
n )− dn(ω̂(q)

n )},

where ω̃(q)
n := arg minω(q)∈Ω(q) dn(ω(q)), subject to β = 0, ω̂(q)

n := arg minω(q)∈Ω(q) dn(ω(q)), and

dn(ω(q)) := (Y − βX(γ)−Vqς
(q))ZMnZ

′(Y − βX(γ)−Vqς
(q)).

Here, we assume that Vq := [V′1,q, . . . ,V
′
n,q]
′, Vt,q := (1,E′t,q)

′ := (1,X′t,q,D
′
t)
′, and ς(q) := (ξ(q)′,η′)′, so that

ω(q) = (ς(q)′, β, γ)′. Note that if q = 1, Vq and Vt,q would be identical to V and Vt in Section 2.3, respectively, so that

Dn,1 = Dn.

We now obtain the null limit distribution of the DD-test as for the linear model case. For this, we extend the earlier

model and moment conditions, to have the following assumption:

Assumption 7. (i) The structure between Yt and Et is specified asMq := {mt,q(ω
(q)) := Yt −X′t,qξ

(q) −D′tη −

βXγ
t : ω(q) ∈ Ω(q) ⊂ Rk+q+3}, where Ω(q) := Ξ(q) ×∆ ×B × Γ(q) such that Ξ(q), ∆, B, and Γ(q) := [γ, γ]

are convex and compact in Rq, Rk+1, R, and R, respectively; 0, 1, . . ., and q are interior elements of Γ(q);

(ii) for the measurable functions m(·) and (ξ0∗, δ
(q)′
∗ )′ ∈ R1+k+q, Yt = ξ0∗ + E′t,qδ

(q)
∗ +m(Xt) + Ut, where Et,q :=

(1,X′t,q,D
′
t)
′ and Xt,q := (1, Xt, X

2
t , . . . , X

q
t )′;

(iii) E[Vt,qZ
′
t] and V′qZ have full row ranks uniformly in n, where Vt,q = (1,E′t,q)

′ and Vq := [V′1,q, . . . ,V
′
n,q]
′;
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(iv) an SSE sequence {Mt} exists such that E[M4
t ] <∞ and supγ∈Γ(q) |Xγ

t | ≤Mt;

(v) E[X4q
t ] <∞ and E[L4

t ] <∞;

(vi) E[Gt(·)Z′t]M0E[ZtGt(·)′] is PD uniformly on Γ, where Gt(γ) := (Xγ
t ,V

′
t,q)
′; and

(vii) for j = 1, 2, . . . , q, E[Gt,jZ
′
t]M0E[ZtG

′
t,j ] is PD, where Gt,j := (Xj

t log(Xt),V
′
t,q)
′. �

Remarks.

(a) The parameter space condition in Assumption 2 is modified to include 0, 1, . . . , q as interior elements of Γ(q).

(b) Note that if q = 1, Assumption 7 would imply Assumptions 2, 3, and 4. �

Under the above conditions, we can obtain the properties of the DD-test as for the linearity testing. For this, we follow

the approach of the linear model case. Let

D(β=0)
n,q := −infγ∈Γ(q,c)(ε)infβn

−1{dn(β; γ)− dn(0; γ)} = sup
γ∈Γ(q)

1

n

{X(γ)′QqU}2

X(γ)′QqX(γ)
,

to obtain the null limit distribution of the DD-test under H′′0,1, where dn(β; γ) := minς(q) dn(ω(q)), and Qq := Z̈{I −

Z̈′Vq(V
′
qZ̈Z̈′V′q)

−1V′qZ̈}Z̈′. Next, as for the linear model case, for each s = 0, 1, . . . , q, let

D(γ=s)
n,q := max[D(γ=s;ξs)

n,q ,D(γ=s;β)
n,q ],

to obtain the null limit distribution of the DD-test underH′′0,2+s, where

D(γ=s;β)
n,q := −infβinfγn

−1{dn(γ;β)− dn(1;β)} and D(γ=s;ξs)
n,q := −infξs infγn

−1{dn(γ; ξs)− dn(1; ξs)}

with dn(γ;β) := minς(q) dn(ω(q)), dn(γ; ξs) := min
ξ

(q)
−s ,η,β

dn(ω(q)), and ξ(q)
−s := (ξ0, . . . , ξs−1, ξs+1, . . . , ξq)

′. We

obtain all these statistics by optimizing the GMM distance function with regard to the unidentified parameters under each

sub-null hypothesisH′′0,2+s in the final stage. The null limit approximation of the DD-test is obtained as their maximum,

as for the linear model case. That is, if we let

D̃n,q := max[D(β=0)
n,q ,D(γ=0)

n,q ,D(γ=1)
n,q , · · · ,D(γ=q)

n,q ],

then the DD-test Dn,q would be asymptotically equivalent to D̃n,q and D̃n,q = D(β=0)
n,q + oP(1) under H′′0 by analogy, so

that Dn,q = D(β=0)
n,q + oP(1) underH′′0 .

The omnibus power of the DD-test is also obtained as for the linear model case. For the desired properties, we assume

that for the measurable functionm(·), Yt = X′t,qξ
(q)
∗ +D′tη∗+m(Xt)+Ut such that E[UtZt] = 0, with possibly no (β, γ),

such that m(Xt) = βXγ
t with probability 1. Given this, it follows that plimn→∞n

−2{dn(ω̃
(q)
n ) − dn(ς̂

(q)
n (γ), γ)} =

supγ∈Γ(q) µ2
q(γ) by applying the ergodic theorem, where ς̂(q)

n (γ) := arg minς dn(ς, γ), ς(q) := (ξ(q)′,η′)′, and for each
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γ ∈ Γ(q),

µq(γ) :=
E[m(Xt)Z̃

′
t]JqE[Z̃tX

γ
t ]

{E[Xγ
t Z̃′t]JqE[Z̃tX

γ
t ]}1/2

.

Here, Jq := I − E[Z̃tV
′
t,q](E[Vt,qZ̃

′
t] E[Z̃tV

′
t,q])

−1E[Vt,qZ̃
′
t]. From this, if supγ∈Γ(q) µ2

q(γ) > 0, the DD-test would

have a consistent power.

We collect these null and alternative limit properties, to obtain the following corollary:

Corollary 1. Given Assumption 1 and 7,

(i) Dn,q ⇒ supγ∈Γ(q) Z2
q (γ) under H′′0 , where {Zq(γ) : γ ∈ Γ(q)} is a zero mean Gaussian process such that

for each pair (γ, γ′), E[Zq(γ)Zq(γ′)] = ρq(γ, γ
′) := κq(γ, γ

′)/{σ2
q (γ)σ2

q (γ
′)}1/2, κq(γ, γ′) := E[Xγ

t Z̃′t]Jq

Σ̃JqE[Z̃tX
γ′

t ], σ2
q (γ) := E[Xγ

t Z̃′t]JqE[Z̃tX
γ
t ], and for each j = 0, 1, . . . , q, Z2

q (j) is the limit of D(γ=j)
n,q ;

(ii) if JqE[Z̃tm(Xt)] 6= 0, and possibly there is no (β, γ) such that m(Xt) = βXγ
t with probability 1, then for some

γ̃ ∈ Γ(q), n−1Dn,q = µ2
q(γ̃) + oP(1) such that µ2

q(γ̃) > 0; and

(iii) if for a measurable function s(·), m(Xt) = n−1/2s(Xt) with probability 1, J1E[Z̃ts(Xt)] 6= 0, and possibly

there is no (β, γ) such that s(Xt) = βXγ
t with probability 1, then Dn,q ⇒ supγ∈Γ(q){Zq(γ) + νq(γ)}2, where

νq(·) := E[X
(·)
t Z̃t]JqE[Z̃ts(Xt)]/σ1(·). �

Remarks.

(a) Corollary 1 generalizes the consequences in Theorems 1 and 2 to the polynomial model case; we can prove them by

iterating the proofs of Theorems 1 and 2. We summarize the proof as follows: first, for each ε > 0, it follows that

D(β=0)
n,q (ε)⇒ supγ∈Γ(q,c)(ε)Z2

q (γ) underH′′0,1 by extending Lemma 1, where Γ(q,c)(ε) := Γ(q) \∪qj=0(j−ε, j+ε);

second, for each s = 0, 1, . . . , q, it follows that D(γ=s)
n,q = {C′sQqU}2/{nC′sQqCs} + oP(1) under H′′0,s+2 :

γ∗ = s; finally, if we assume that Nn,q(γ) := {X(γ)′QqU}2 and Dn,q(γ) := nX(γ)′QqX(γ), then for each

s = 0, 1, 2, . . . , q,

plimγ→s
Nn,q(γ)

Dn,q(γ)
=

1

n

{C′sQqU}2

C′sQqCs
= D(γ=s)

n,q + oP(1);

this implies that the GMM distance obtained under H′′0,1 becomes larger than those obtained under H′′0,s with

s = 2, 3, . . . , q+ 2. Thus, Dn,q = D(β=0)
n,q + oP(1) underH′′0 , as for the linear model case. Since this proof slightly

generalizes that condition already demonstrated for the linearity, we do not repeat this same proof in the Appendix.

(b) Note that the covariance kernel of Zq(·) is different from that of ρ1(·, ·) in Lemma 1. This depends on both the

model and DGP conditions. For the same DGP, different polynomial models provide different covariance kernels.

Likewise, for the same model, different DGPs provide different covariance kernels. Furthermore, the null limit

distribution of the DD-test depends on Γ(q). We obtain different null limit distributions with different Γ(q).

(c) Despite the different properties between Zq(·) and Z1(·), the asymptotic critical values can be obtained similarly

to Z1(·). Under mild regularity conditions, we can estimate πq(·) := JqE[Z̃tX
(·)
t ]/σ2

q (·)1/2 consistently by its

sample analog, letting Z̃q(·) := πq(·)U and simulating supγ∈Γ(q) Z̃2
q (γ), where U ∼ N(0, Σ̃) as before.
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(d) Corollaries 1(ii and iii) extend the properties of Theorem 2 under the fixed and local alternative hypotheses, respec-

tively. �

3.3 Sequentially Estimating Correct Polynomial Model

Corollary 1 provides a system basis for sequential testing using polynomial models. By applying the sequential testing

procedure to Corollary 1, we can estimate the unknown degree of the polynomial model consistently. For this, we assume

that q̄ is the maximum degree of the polynomial models considered, and I(q̄) := {1, 2, . . . , q̄} is a set of model indices,

so that q̄ number of models are considered here in total. We also assume that Γ(q̄) includes the elements of I(q̄) as

interior elements and Γ(q̄) is identical to Γ(q) in Mq for each q ∈ I(q̄). We further assume that q∗ is the minimum

degree polynomial model correctly specified. Note that if the qth-degree polynomial model is correctly specified, every

polynomial model with a degree higher than q is also correctly specified. The goal of the sequential testing procedure is

to estimate q∗ to derive the most parsimonious and correctly specified model. If q∗ /∈ I(q̄), every model is misspecified.

Our sequential testing procedure is performed in the following order:

• Step 1: We compute Dn usingM and compare it with the critical value cv1(αn) in Corollary 1 at the level of αn.

If the Dn is less than or equal to cv1(αn), we stop this sequential testing procedure and conclude that the structural

relationship is linear. Otherwise, we move to the next step.

• Step 2: For q = 2, 3, . . . , q̄, compute Dn,q and iterate the same testing procedure using the critical value cvq(αn)

implied by the same level of significance αn as in given Step 1 and the null limit distribution in Corollary 1. If

there is any q ∈ I(q̄) such that Dn,q is less than or equal to cvq(αn), we let the degree estimator be q̂n := min{q ∈

I(q̄) : Dn,q ≤ cvq(αn)}.

• Step 3: If there is no q ∈ I(q̄) such that Dn,q is less than or equal to cvq(αn), we conclude thatM(q̄) := {Mq :

q ∈ I(q̄)} is not adequate to capture the structural nonlinearity between Yt and Xt.

Here, the level of significanceαn is set to depend on n. The degree estimation error due to the sequential testing procedure

would not vanish if it were fixed at a certain level. Therefore, we allow it to converge to zero gradually as n increases.

Thus, the degree estimation error vanishes as n increases (e.g., Cho and Phillips, 2018). Theorem 6 discusses how to

choose αn in order to estimate q∗ consistently:

Theorem 6. Given that for each q ∈ I(q̄), Assumptions 1 and 7 hold with Γ(q) being Γ(q̄),

(i) if for each α ∈ (0, 1), αn = α and q∗ ∈ I(q̄), then for each ε > 0, limn→∞ P(|q̂n − q∗| > ε) = α; and

(ii) if for each q ∈ I(q̄), (a) P(supγ∈Γ(q̄) Zq(γ) ≥ aq) ≤ 1/2 for some aq, (b) limn→∞αn = 0, and (c) limn→∞ log

(αn)/n = 0, then for any ε > 0, limn→∞ P(|q̂n − q∗| > ε) = 0. �

Remarks.

(a) From Theorem 6(i), if αn does not converge to zero as n tends to infinity, the degree estimator does not vanish

to zero. Theorem 6(ii) provides the conditions for αn to converge to zero so that the degree estimation error
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converges to zero. Note that the possibility of estimating a degree less than q∗ gets smaller as n increases because

of the omnibus power of the DD-test for q < q∗.

(b) The regularity conditions in Theorem 6(ii) are weaker than those in theorem 2 of Cho and Phillips (2018), because

they presume a locally stationary Gaussian process with covariance structure dominated by that of the standardized

Zq(·). However, Theorem 6(ii) does not assume such a Gaussian process.

(c) Since the proof of Theorem 6(i) is straightforward from Corollary 1, we do not include it in Appendix. Theorem

6(ii) can be proved by applying Borel’s theorem on the upper probability bound of an extreme Gaussian stochastic

process (e.g., Piterbarg, 1996, p. 13). �

4 Simulation

In this section, we simulate the DD-test and compare its performance with other tests and MSCs. We first compare their

empirical sizes and powers and next their capability of estimating the unknown degree of the polynomial model. Finally,

we examine the asymptotic size of the DD-test.

4.1 Empirical Size and Power

We suppose two simple DGPs and estimate the unknown parameters by GMM, to examine the empirical size properties

of the DD-test. We proceed in the following steps:

• Step 1: We first generate data as follows:

Yt = β1∗Xt + β2∗m(Xt) + Ut,

where Xt :=
∑4

j=1 Ztj + U2
t 1(|Ut| ≤ bd) such that Ut ∼ IID N(0, 1), Zt1 ∼ IID U(0, 1), Zt2 and Zt3 ∼ IID

Beta(5, 5), and Zt1 ∼ IID Beta(5, 3). Here, 1(·) is the indicator function, and Ut is bounded between [−bd, bd]

when defining Xt. The unspecified β1∗, β2∗, m(·), and bd are going to be given below to characterize the null and

alternative hypotheses. We denote this as DGP A. As our next DGP, we let Xt :=
∑4

j=1 Ztj + U2
t such that Ut ∼

IID N(0, 1), Zt1 ∼ IID Half-N(0, 1), Zt2 ∼ IID Beta(5, 5), and Zt3 ∼ IID Beta(5, 3), and Zt3 ∼ IID X 2
1 . We

denote this as DGP B. For both DGPs, each of Zt1, . . . , Zt4, and Ut is independently drawn. Note thatXt is always

positively valued and correlated with Ut, whereas Ut is not correlated with Zt1, . . ., Zt4.

• Step 2: We estimate the unknown parameters by GMM by letting

Mo
1 :=

{
mt(ω) := Yt −Xtξ − βXγ

t : ω ∈ Ω ⊂ R3
}
,

so that Vt := Xt. Here, we let γ ∈ Γ := [−0.25, 2.25], and this lets a quadratic model in Xt be nested in theMo
1.

The other are parameters are not restricted. We also let Zt := (Zt1, . . . , Zt4)′ and Mn := (n−1Z′Z)−1. Here,
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we do not contain unity in Vt and Zt, because the PD matrix condition in Assumption 2(iv) does not hold by this.

Here, we obtain the empirical size and power of the DD-test by applying Hansen’s (1996) weighted bootstrap.

Specifically, after estimating ω∗ by GMM, we let Ût := mt(ω̂n) and compute

Ĝ2
b := sup

γ∈Γ

(
1√
n
π̂n(γ)′

n∑
t=1

ZtÛtG
(b)
t

)2

for b = 1, 2, . . . , B, where for each b, G(b)
t is independently drawn from N(0, 1). Here, π̂n(·) is the sample analog

of π1(·) defined in the remark below Theorem 1, and n−1/2
∑n

t=1 ZtÛtG
(b)
t corresponds to Û . Instead of Ût, we

can also use the residual generated by ω̃n. We finally compute the empirical p-value by p̂n := B−1
∑B

b=1 1(Ĝ2
b >

Dn) and reject the linearity hypothesis of p̂n < α, where α is the level of significance.

• Step 3: We also apply other tests in the literature for comparison purposes. First, we apply the Horowitz’s (2006)

test that requires that explanatory and instrumental variables must be constrained on the unit interval. Furthermore,

the number of instrumental variables must be the same as that of the explanatory variables. So, the DGP and

model conditions of our simulated data need to be modified accordingly. We redefine the instrumental variable by

scaling down the sum of instrumental variables by the maximum value, viz., X̃t := Xt/max[X1, . . . , Xn] and

Z̃t :=
∑4

j=1 Ztj/max[
∑4

j=1 Z1j , . . . ,
∑4

j=1 Znj ]. Using them, we estimate the null model by GMM and apply

his test. Following his recommendation, we estimate 25 largest eigenvalues of the covariance matrix estimator, to

obtain the null limit distribution of his test. We let Hn denote his test. Second, we apply Breunig’s (2015) test.

Out of his two tests used for the simulation, we employ the second test.2 We obtain the null limit distribution of his

test by estimating 200 largest eigenvalues of the covariance matrix estimator following him, letting Bn denote his

test. Finally, we apply the J-test as defined by Sargan (1958, 1988) and Hansen (1982). Note that the J-test can also

be used to test correct model specification because the null hypothesis of the J-test does not hold unless the model

is correctly specified. We denote it as Jn. �

We now report the size properties of the tests. For this purpose, we let β∗ = (1, 0)′ in DGP A so that a linear structural

relationship holds between Yt andXt. We let bd = 1. The simulation results are reported in the first panel of Table 1. The

total number of experiments and B are 5, 000 and 500, respectively. The simulation results are summarized as follows:

(a) For every n of consideration, the DD-test exhibits empirical rejection rates more or less similar to the nominal

significance levels, affirming Theorem 1. This aspect also implies that the DD-test controls type-I errors efficiently.

(b) Horowitz’s, Breunig’s, and Sargan’s tests also control type-I errors efficiently. Although Bn suffers from size

distortion for high levels of significance, it is not substantial. �

We next examine the empirical size under DGP B. We let β∗ = (1, 0)′ and contain the simulation results in the second

panel of Table 1. The simulation results are summarized as follows:

(a) The DD-test exhibits empirical rejection rates more or less similar to the nominal significance levels. When n is
2His second test outperforms the first test under our simulation environment.
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small, the empirical rejection rates are slightly different from the nominal levels but the size distortion disappears

soon as n increases.

(b) Horowitz’s, Breunig’s, and Sargan’s tests control type-I errors efficiently. �

We next examine the empirical power properties. For this purpose, we first generate data according to the following

two plans:

• DGP A′: β∗ = (1,−0.4)′, m(Xt) = X2
t , and bd = 1;

• DGP A′′: β∗ = (1,−0.4)′, m(Xt) = X2
t , and bd = 3.

The explanatory variables and instrumental variables are generated according to DGP A. Note that Mo
1 is correctly

specified for both DGPs A′ and A′′. The simulation results are reported in the first two panels of Table 2. They are

obtained by letting the total number of experiments and B be 3, 000 and 500, respectively. The simulation results are

summarized as follows:

(a) The DD-test shows consistent power, that is the same for the other tests.

(b) The DD-test has a comparable power against the other tests. When bd = 1 (DGP A′), Hn is the most powerful

and Jn is least favored, but this relationship is modified if bd increases to 3 (DGP A′′). That is, Dn becomes most

powerful, but Jn is still least favored. This aspect implies that the power ranking among the tests depends on the

size of bd. �

We next examine the empirical power under DGP B under the same simulation environment as for the previous one.

For this, we generated data according to following two DGPs:

• DGP B′: β∗ = (1, 1)′ and m(Xt) = tanh(−Xt/2);

• DGP B′′: β∗ = (1, 2)′ and m(Xt) = 2| sin(−Xt/5)|.

The explanatory variables and instrumental variables are generated according to DGP B. Note thatMo
1 is misspecified

for both DGPs B′ and B′′ contrary to the earlier simulation. The simulation results are reported in the final two panels of

Table 2. We summarize the simulation results as follows:

(a) The DD-test shows consistent power, that is the same for the other tests. This is consistent with Theorem 2.

(b) The DD-test is most powerful, and Bn is least powerful for both DGPs B′ and B′′. �

In addition to the power examinations in Table 2, we conducted power simulations using data obtained by different

DGPs and models. We describe our experiences as follows: First, whenMo
1 is misspecified, if Γ is selected to be too

narrow, the overall power of the DD-test is not so great as that with a bigger Γ. Unless the DD-test suffers from size

distortion, it is recommended to select a moderately wide interval for Γ. Second, for different DGPs, we could observe

power rankings different from that in Table 2. Under different DGP conditions, any of the four test statistics could be most

powerful. It is challenging to rank the powers of the tests under a generic DGP condition. Third, the regularity conditions

of the four tests are different. For example, the DD-test requires Xt to be positive, and further the rank condition needs

to be satisfied. In contrast, Horowitz’s (2006) test requires the number of the explanatory variables is identical to that of

the instrumental variables and further that they are defined on the unit interval. Similarly, Breunig’s (2015) test performs
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depending on the supports of the explanatory variables and instrumental variables. These aspects suggest that they can

supplement each other.

4.2 Application to the Sequential Testing Procedure

We next examine the DD-test and its application to the sequential testing procedure by simulation and compare it with

the J-test and MSCs.

We conduct simulations according to the DGP and model conditions as given in the following plan:

• Step 1: We assume that (Dt, Ut)
′ ∼ IID N(0, I2) and generate the following 11 instrumental variables: Zt1 ∼ IID

U(0, 1), Zt2 and Zt3 ∼ IID X 2
1 , Zt4 and Zt5 ∼ IID Rayleigh(1), Zt6 and Z7t ∼ IID Half-N(0, 1), Zt8 and Zt9 ∼

IID Beta(5, 3), and Zt10 and Zt11 ∼ IID Beta(5, 5). Each of Dt, Ut, Zt1, . . ., Zt11 is independently distributed,

and all of Zt1, . . ., Zt11 are positively valued. We further let Xt :=
∑11

j=1 Ztj + U2
t , so that Xt is also positively

valued with probability 1, and Xt and Ut are correlated, but Ut is not correlated with Zt1, . . ., Zt10, and Zt11.

• Step 2: We consider the following structural equation:

Yt := β1∗Dt + β2∗Xt + β3∗X
2
t + Ut,

so that if we let β∗ = (1, 1, 0.005)′, Yt is quadratically associated with Xt.

• Step 3: We estimateβ∗ by GMM. For this, we let our models be specified as follows: for each q ∈ I(3) := {1, 2, 3},

M′q :=
{
mt,q(ω

(q)) := Yt −Dtη −Xtξ1 − . . .−Xq
t ξq − βX

γ
t : ω(q) ∈ Ω(q) ⊂ R3+q

}
,

where ω(q) := (ξ1, . . . , ξq, η, β, γ)′, and Ω(q) is the parameter space of ω(q). In particular, we assume that the pa-

rameter space of γ is Γ = [0.50, 3.50], so that the third-degree polynomial model is nested inM′q for q = 2, 3. The

other parameter spaces are not restricted. Given this model assumption, we also let Zt := (Dt, Zt1, Zt2, . . . , Zt11)′,

Mn = (n−1Z′Z)−1, and for each q ∈ I(3), Vt,q := (Dt, Xt, . . . , X
q
t ). The GMM estimator is obtained by mini-

mizing the GMM distance for each q ∈ I(3). �

Note thatM′2 andM′3 are correctly specified models, andM′2 is the most parsimonious model. Therefore, the main goal

of the sequential testing procedure is achieved when q∗ = 2 is consistently estimated.

Given the DGP and model conditions, we perform our simulations in the following three steps:

• Step 1: Using the DD-test, we test whether the structural model is correctly specified. Here, we apply Hansen’s

(1996) weighted bootstrap as in Section 4.1. The bootstrap iteration B is 300, and we fix the significant level at

10%, 5%, and 1%. We also apply the J-test.

• Step 2: By letting the significance level decrease as n increases, we can apply Theorem 6(ii). Specifically, we let

αn = 1/n1/2, 1/n3/4, and 1/n and examine how the degree estimation error is formed. Note that the significance

levels converge to zero by these level plans but the convergence rate of αn = 1/n is faster than the others. We
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also apply the sequential testing procedure to the J-test. We call them the DD- and J-sequential testing procedures,

respectively.

• Step 3: Finally, we apply the MSCs in Andrews (1999). We examine three MSCs, the Akaike-type model MSC,

Bayesian-type MSC, and Hannan-Quinn-type MSC; specifically, they are

AIC-MSC := J̄n,q − 2(p− q − 1)/n, Bayesian-MSC := J̄n,q − log(n)(p− q − 1)/n,

Hannan-Quinn-MSC := J̄n,q − κ log(log(n))(p− q − 1)/n,

respectively, where J̄n,q := n−1Jn,q; and we let κ be 2.01 following Andrews (1999). The model performing best

is the one with the smallest MSC. �

We iteratively perform this three-step simulations and report the simulation results in Tables 3 and 4. Table 3 presents

the results obtained through Step 1, and Table 4 reports the results obtained by Steps 2 and 3. Specifically, they report the

precision rate of each method. For example, if q̂n,r denotes the degree estimated by the rth- simulation, the precision rate

is computed by R−1
∑R

r=1 I(q̂n,r = q∗)× 100, where R is the total number of experiments. We let R be 3,000.

The simulation results in Table 3 are summarized as follows:

(a) When the significance level is fixed, the degree estimator obtained by the DD-sequential testing procedure yields

the results predicted by Theorem 6(i). If the significance level is fixed at α, the estimated precision rate converges

to (1−α)× 100 for q = 2 as n increases.

(b) Similar results are obtained for the J-sequential testing procedure. Nevertheless, we also note that the J-sequential

testing procedure is asymptotically more conservative than the DD-sequential testing procedure. For example,

when n = 4, 500 and α = 10%, the J-sequential testing procedure produces more precise estimation results than

the DD-sequential testing procedure. It is mainly because the J-test is more conservative than the DD-test. In other

words, it is more difficult to control type-I error. �

We now examine the sequential testing procedures obtained by letting the significance levels depend on n. Table

4 reports the simulation results of each estimation method when αn = n−1/2, n−3/4, and n−1. We summarize the

simulation results as follows:

(a) As n increases, the estimation errors decrease by applying the DD-sequential testing procedure. Furthermore, for

any significance level, smaller estimation errors are observed for the data sets with larger n, so that the degree

estimation errors based on αn = n−1 are smaller than the others.

(b) Likewise, the J-sequential testing procedure also estimates q∗ consistently. Nevertheless, we note that the DD-

sequential testing procedure better controls the precision rate. Here, the hypothetical rate defined as (1−αn)×100

denotes the precision rate desired by each sequential testing procedure. Nevertheless, note that the precision rates

produced by the DD-sequential testing procedure are closer to the hypothetical rates than the J-sequential testing

procedure.
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(c) As n increases, the estimation errors of using MSCs also decrease. The Bayesian-type MSC estimates q∗ more

efficiently than the other two MSCs.

(d) For a small n, the DD-sequential testing procedure performs better than the J-sequential testing procedure, but this

is not true for every α and n. For example, for αn = n−1/2, if n increases, the J-sequential testing procedure

estimates q∗ more precisely than the DD-test. It is mainly because the J-test is more conservative than the DD-test.

However, for αn = n−1, this dominance relationship is reversed as n increases. The DD-test is better controlled,

so that the estimation error from the DD-sequential testing procedure shows more precise rates than the J-sequential

testing procedure. �

These simulations prove that we can efficiently estimate the most parsimonious and correctly specified polynomial struc-

tures using the DD-sequential testing procedure.

In addition to the reported simulations, we also conducted different simulations using different DGP and model

conditions, producing different simulation results depending on the choice of significance level. In all these simulations,

the DD-test remains appealing in its performance, as in Tables 3 and 4.

4.3 Asymptotic Uniform Inference

In this section, we examine the asymptotic size of the DD-test by simulation. Specifically, we provide simulation evidence

that

lim
n→∞

sup
ω∗

Pω∗ [Dn > cvn(α)] = lim
n→∞

inf
ω∗

Pω∗ [Dn > cvn(α)] = α

underH′0 : β∗ = β0 againstH′1 : β∗ 6= β0, when the modelM in Section 2.2 is specified.

We proceed with our simulations in the following steps:

• Step 1: We generate data according to the following DGP condition:

Yt = ξ∗Xt + β∗X
γ∗
t + Ut,

where Xt :=
∏12
j=1 Ztj

∑12
j=1 Ztj +U2

t such that Zt1 and Zt2 ∼ IID U [0, 1], Zt3 and Zt4 ∼ IID Beta[5, 3], Zt5 and

Zt6 ∼ IID Beta[5, 5], Zt7 and Zt8 ∼ IID X 2
1 , and Zt9, . . . , Zt12 ∼ Half-N(0, 1). Each of Zt1, . . . , Zt12, and Ut is

independently drawn, and all of Zt1, . . . , Zt12 are positively valued.

• Step 2: Given the DGP condition, we let our model be defined as follows:

M′′ := {mt,q(ω := Yt −Xtξ − βXγ
t : ω ∈ Ω}

with ω := (ξ, β, γ)′, and Γ := [0.50, 3.50]. We also let Zt and Mn be (Zt1, . . . , Zt12) and (n−1Z′Z)−1, respec-

tively. Here, the parameter values are specified as ξ∗ = 1, β∗ ∈ {−0.75,−0.5, 0.25, 0.00, 0.25, 0.50, 0.75} and

γ∗ ∈ {0.50, 0.75, 1.00, 1.25, 1.50}.
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• Step 3: We compute the empirical rejection rates of the DD-test under H′0 : β∗ = β0 using the above data. For

this computation, we separately consider the models with and without the identification problem. If β∗ = 0.00 or

γ∗ = 1.00, the modelM′′ is not identified. We therefore test the linear model hypothesis by using the null limit

distribution in Theorem 1 and by applying Hansen’s (1996) weighted bootstrap described in Section 4.1. That is,

we obtain the asymptotic critical value by cvn(α) := inf{x ≥ 0 : F̂B(x) ≥ 1− α}, where F̂B(·) is the empirical

distribution of {Ĝ2
1 , . . . , Ĝ2

B}. On the other hand, for β∗ 6= 0 and γ∗ 6= 1, the modelM′′ is now identified. Thus,

we approximate the DD-test as (12) and we next apply Hansen’s (1996) weighted bootstrap similarly to testing

the linear model hypothesis. Specifically, for b = 1, . . . , B, we first let

Ĝ2
b =

1

n

{X(γ̂n)′(Q1 −Q1D(γ̂n)(D(γ̂n)′Q1D(γ̂n))−1D(γ̂n)′Q1)Üb}2

X(γ̂n)′(Q1 −Q1D(γ̂n)(D(γ̂n)′Q1D)−1D(γ̂n)′Q1)X(γ̂n)

by following (12), where Üb := [Ũ1G
(b)
1 , . . . , ŨnG

(b)
n ]′, Ũt := m(ω̃n), and G(b)

t is independently drawn from

N(0, 1) with respect to t and b. From this, we obtain the asymptotic critical value as for the linearity testing case.

�

Table 5 reports the simulation results that are obtained from the data with each combination of ξ∗, β∗ and γ∗. The

first and second panels are obtained by letting n = 500 and 5, 000, respectively. The level of significance is α = 5%.

The simulation results are summarized as follows:

(a) For n = 500, it is not quite clear that the empirical rejection rate is close to 5% uniformly on the parameter space

of consideration. It is evident that the empirical rejection rate is close to 5% when β∗ = 0.00 or γ∗ = 1.00; or when

(β∗, γ∗) is quite different from (0.00, 1.00). On the contrary, if β∗ or γ∗ is close to 0.00 or 1.00, respectively, the

empirical rejection rate is quite different from 5%. For example, if (β∗, γ∗) = (0.75, 1.25), the empirical rejection

rate is obtained as 4.67, whereas if (β∗, γ∗) = (0.25, 1.25), the empirical rejection rate is obtained as 1.53. This

aspect implies that the DD-test can have a finite sample size distortion when the parameters are close to Υ0.

(b) For n = 5, 000, the size distortion of the DD-test substantially reduces. Most empirical rejection rates are close

to 5%, and this feature is observable even for the parameters close to the linear model. For example, if (β∗, γ∗) =

(0.25, 1.25), the empirical rejection rate is obtained as 5.10, that is quite different from n = 500. The only

exceptional cases are (β∗, γ∗) = (−0.25, 0.75) and (0.25, 0.75) as their empirical rejection rates are 2.13 and 2.00,

respectively, but their respective empirical rejection rates are 3.40 and 4.40 when n = 10, 000, implying that the

finite sample size distortion further reduces as n further increases. For the other significance levels 1% and 10%,

we could obtain similar results.

(c) For finite n, the DD-test can be usefully exploited if the researcher wishes a conservative test. It is mainly because

of the unidentified model feature and the fact that the DD-test is constructed by the LR-test principle. The intuition

is straightforward. If we concentrate dn(ω) with respect to (ξ0, δ) to obtain the concentrated GMM estimator

(ξ̂0,n(β, γ), δ̂n(β, γ)) and draw dn(β, γ) := dn(ξ̂0,n(β, γ), δ̂n(β, γ), β, γ) as a function of (β, γ), it becomes a very

flat function on the space of (β, γ) under the null of linearity, that is a consequence of the multifold identification
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problem. This fact is still effective even if (β∗, γ∗) is close to Υ0 without belonging to Υ0. That is, dn(·, ·) is

still quite a flat function, although it is minimized at (β∗, γ∗) at the limit. This flat function implies that dn(·, ·) is

poorly approximated by a quadratic function for finite n, so that when testing H′0 : β∗ = β0(6= 0), the DD-test

statistic measuring the distance of two GMM distances is likely to be smaller than the asymptotic critical value

obtained by approximating dn(·, ·) through Taylor’s expansion, so that P(β∗,γ∗)(Dn > cvn(α)) ≤ α, as revealed

by the current simulation. Note that for n = 500, the empirical rejection rates of the DD-test are less than 5% for

most (β∗, γ∗)’s around (0.00, 1.00) but get to close 5% from below as n increases to 5, 000. That is, if n is finite,

the type-I error can be controlled at a level less than or equal to α around Υ0. This is certainly an advantage of

using the current methodology. In contrast, if a simple polynomial model is instead specified without the power

transform to test linear versus quadratic models say, the unidentified model feature cannot be exploited any longer

to test the coefficient of the quadratic term, implying that if the coefficient is close to zero, the finite sample type-I

error can be quite different from α in an unexpected way as Leeb and Pötscher (2005) illustrate using a simple

linear model example. �

These results provide simulation evidence that Hansen’s (1996) weighted bootstrap is useful for the DD-test to

become a valid testing procedure uniformly on the assumed parameter space.

5 Production Function Estimation Using Firm-Level Data

Recently, the literature has seen large distributional consequences of shares across different factors of production. For

example, there was a large rise in wage inequality between skilled and unskilled workers and also a decline in labor

shares over capital shares. Karabarbounis and Neiman (2014) and Piketty (2014) empirically examine the decline of the

labor share, while Krusell et al. (2000) and Acemoglu and Restrepo (2018) report wage inequality between skilled and

unskilled workers.

The distributional consequence of factor shares is attributed to the factor-biased technological change. The studies

mentioned above argue that the recent technological changes have favored some factors over others, resulting in the

recently discovered large distributional consequence across factors. For example, Krusell et al. (2000) attribute the

increase in wage inequality between skilled and unskilled workers to the skill bias technological change.

Behind the factor-biased technological change, the key assumption lies in the fact that the production function is

log-nonlinear in factors, that cannot be related to the typically assumed Cobb-Douglas production technology. The

Cobb-Douglas function implicitly assumes that any technological change is Hicks-neutral instead of being factor-biased.3

Therefore, any technological change under Cobb-Douglas technology leads to a proportional increase in the output ob-

tained from any combination of inputs, so that the technological change cannot be related to the distributional conse-

3Production function F (L,K,A) is said to exhibit labor-augmenting (resp. capital-augmenting) technology if ∂
∂A

(
∂F (L,K,A)/∂L
∂F (L,K,A)/∂K

)
> (resp.

<) 0 (e.g., Acemoglu, 2008), where L, K, and A are labor, capital and technology shock, respectively. The log-linearity property of Cobb-Douglas
function implies that ∂

∂A

(
∂F (L,K,A)/∂L
∂F (L,K,A)/∂K

)
= 0.
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quence. Meanwhile, the factor-biased technological change affects the effective unit of one factor disproportionately

relative to other factors, resulting in the large distributional consequence follows across factors. Therefore, it is important

to affirm whether the production technology is well approximated by a Cobb-Douglas function or not when evaluating

the prior studies in terms of the factor-biased technological change.

The DD-test can be usefully exploited for this purpose. Note that the DD-test can easily test the log-linearity of the

Cobb-Douglas production function. If the Cobb-Douglas production technology cannot be rejected, the recent studies

need to be revisited carefully as they may incorrectly attribute the recent rise in wage inequality and decline in labor

shares to the factor-biased technological change. Otherwise, we cannot reject the factor-biased technological change as a

potential explanation of the recently discovered distributional consequence of factor shares.

We consider the following Cobb-Douglas production function with labor and capital:

log(Yt) = βl∗ log(Lt) + βk∗ log(Kt) + log(At), (13)

where Yt is the output of firm t measured by value-added, Lt is the labor input, Kt is the capital stock, and At is the

productivity shock. We test the output is produced according to the log-linear technology in labor and capital. Our null

and alternative hypotheses are stated as follows:

H†0 : Production function is log-linear in factors, viz., Cobb-Douglas. vs. H†1 : Production function is not log-linear.

Note that (13) suffers from the fundamental endogeneity issue, that is well known since Griliches and Mairesse (1995).

The endogeneity problem arises because Lt and Kt are endogenously selected by firm t based on At that is unobservable

to the empirical researcher, although it is observable to the firm. The literature calls this the input bias problem. As

detailed below, it is standard in prior literature to treat Kt as a dynamic input, because it is pre-determined in the current

period by a pre-existing investment plan that makes estimating the coefficient of log capital free from the input bias

problem (e.g., Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015).

There are prior empirical studies for the same purpose, and we employ a different approach when using the DD-test.

Most prior studies directly estimate a prespecified production function that treats Cobb-Douglas technology as a special

case. For example, Antràs (2004), Raval (2019) and Oberfield and Raval (2021) draw empirical economic implications

by estimating the constant elasticity substitution (CES) production technology. Note that the CES production function is

log-nonlinear and nests the Cobb-Douglas production technology as a special case by letting the elasticity of substitution

converge to zero, extending the model scope assumed by the Cobb-Douglas function. Nevertheless, it is also possible that

the assumed CES model is still misspecified, letting the misspecification play a certain role in testing the Cobb-Douglas

production technology. The DD-test approach is different from the prior empirical studies. Note that the DD-test can

detect any log-nonlinearity without imposing a specific structure on the production function because of its omnibus power

against arbitrary nonlinearity. We further apply the sequential testing procedure based upon the DD-test and estimate the
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production function supported by empirical data. We also attempt to draw economic implications from this empirical

analysis.

We specifically apply the DD-test to the control function approach to estimate the production function (e.g., Olley and

Pakes, 1996; Levinsohn and Petrin, 2003). For this purpose, we impose more structural assumptions on the production

function in (13) to estimate the following production function: for each firm t,

log(Yt) = βl∗ log(Lt) + βk∗ log(Kt) + Ut such that Ut := Wt + Vt. (14)

The error term Ut has two components. First, we let Vt be an IID error term to which the firm does not respond by

supposing that it captures measurement or specification error. Next, Wt is a firm-specific time varying productivity shock

that is observable to the firm but unavailable information to the empirical researcher. We let Wt introduce the estimation

bias by supposing that the firm chooses its static inputs labor Lt after observing Wt, that in turn makes log(Lt) be

correlated with the error term. We assume that Wt follows the first-order Markov process, viz., Wt = E[Wt|W (−1)
t ] + εt,

where εt is an innovation in the current period and the superscript ‘(−1)’ is used to denote the first-lagged Wt. For

example, for j = 1, 2, . . ., W (−j)
t denotes the j-lagged Wt with respect to time index. We also suppose that Kt is a

dynamic input that is adjusted with one-period lag by noting that the investment made in the previous period increases

the capital stock in the current period. We also assume that εt is realized after the firm first makes its investment decision

in the previous period. From this supposition, log(Kt) is uncorrelated with εt, whereas it is correlated with Wt mainly

because the firm makes the investment decision in the previous period based on its anticipation of Wt conditional on

W
(−1)
t , viz., E[Wt|W (−1)

t ].

Using the control function approach, the input bias problem can be resolved. Following Levinsohn and Petrin

(2003), we assume that log material input log(Mt) is a proxy variable for Wt, implying that the material input can

be written as log(Mt) = m(Wt, log(Kt)) such that m(·) is strictly increasing with respect to Wt for each value of

log(Kt). Given the strict monotonicity of m(·) with respect to Wt, it is not difficult to show that for some function g(·),

Wt = g(log(Mt), log(Kt)), so that Wt can be written as a function of the observables log(Mt) and log(Kt). As Wt

follows the first-order Markov process, we can express E[Wt|W (−1)
t ] as follows: for some function f(·),

E[Wt|W (−1)
t ] = f(W

(−1)
t ) = f(g(log(M

(−1)
t ), log(K

(−1)
t ))) =: h(log(M

(−1)
t ), log(K

(−1)
t )), (15)

where M (−1)
t and K(−1)

t denote the first-lagged Mt and Kt, respectively. By substituting (15) into (14), we can rewrite

the production function as log(Yt) = βl∗ log(Lt) + βk∗ log(Kt) + h(log(M
(−1)
t ), log(K

(−1)
t )) + εt + Vt. Here, we

can nonparametrically control h(log(M
(−1)
t ), log(K

(−1)
t )) using (log(M

(−1)
t ), log(K

(−1)
t )). For example, Wooldridge

(2009) approximates h(log(M
(−1)
t ), log(K

(−1)
t )) by polynomials of log(M

(−1)
t ) and log(k

(−1)
t ). As another example,

Dhyne et al. (2017) uses the first-order approximation of h(log(M
(−1)
t ), log(K

(−1)
t )) viz., h(log(M

(−1)
t ), log(K

(−1)
t )) ≈

γm∗ log(M
(−1)
t )+γk∗ log(K

(−1)
t ). By substituting this approximate into the production function, we derive the following
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production function:

log(Yt) = βl∗ log(Lt) + βk∗ log(Kt) + γm∗ log(M
(−1)
t ) + γk∗ log(K

(−1)
t ) + εt + Vt, (16)

that we now regard as our regression model. Once we condition out Wt using the lagged proxy variable and the lagged

capital stock, log(Kt) becomes uncorrelated with the error term because Kt is a dynamic input that cannot be ad-

justed contemporaneously to the innovation εt, whereas log(Lt) is a static input that can be flexibly adjusted by the

firm after it observes εt, letting the estimation of βl∗ be subject to the input bias problem. Therefore, log(Yt), log(Lt),

[log(Kt), log(M
(−1)
t ), log(K

(−1)
t )]′, and εt + Vt correspond to Yt, Xt, Dt, and Ut, respectively in terms of the notations

in Section 2.2.

We overcome the input bias problem by employing the GMM estimator with the weighting matrix assuming condi-

tional homoskedastic error on the instrumental variable, so that the GMM estimator becomes equivalent to the two-stage

least squares estimator. Note that the model structure provides a set of valid instrumental variables. Specifically, for each

j = 1, 2, . . ., E[log(L
(−j)
t )(εt + Vt)] = 0, so that a large set of instrumental variables can be constructed by flexibly

employing the lagged labor as valid instrumental variables. Using these instrumental variables, we can apply the DD-test

for a desired empirical inference.

We detail the data structure for empirical application. Compustat data are used for the estimation that cover 2,140

public firms in the United States in the year of 2019. The variables of value-added Yt, employment Lt, material input

Mt, and capital stock Kt are constructed by following İmrohoroğlu and Tüzel (2014) without missing observations. In

the Appendix, we provide more detailed information on the data construction. Furthermore, the observations in the data

set trivially satisfy the positive endogenous variable condition because the firm-level data set covers the firms with more

than a single employee. For the instrumental variables, we specifically let them be 3 lagged log labors or their squares as

follows:

Zt :=
[
log(L

(2016)
t ), log(L

(2017)
t ), log(L

(2018)
t ), log2(L

(2016)
t ), log2(L

(2017)
t ), log2(L

(2018)
t )

]′
,

where for example, L(2016)
t denotes the employment of the t-th firm in year 2016. We below test whether the selected

instrumental variables are strong enough to apply the DD-test using Kleinbergen and Papp’s (2006) and Stock and

Yogo’s (2005) F -tests.

Table 6 reports the OLS and GMM estimates of (13). We present the OLS estimates results in columns (1)-(2), and

the GMM estimates results in columns (3)-(4). In columns (1) and (3), we report the estimation results of Cobb-Douglas

production function by OLS and GMM, respectively. Column (4) assumes that Cobb-Douglas production technology is

misspecified with respect to the endogenous variable log(Lt) and remedies the misspecification by adding its square term

on the right side. We summarize the estimation results as follows:

(a) The OLS estimates of log(Lt) are slightly bigger than the corresponding GMM estimates. The direction of the

biases is consistent with the model assumption that labor can be adjusted contemporaneously to the innovation εt.
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Because the firm with positive εt uses more labor inputs, it leads to the upward bias of the OLS estimate.

(b) At the bottom panel of Table 6, Kleinbergen and Papp’s (2006) F-test is reported. The test values are bigger

than the rule-of-thumb value 10 for the models in column (3) and (4) (cf., Staiger and Stock, 1997), implying that

the instrumental variables do not suffer from the weak instrumental variable problem. When Cragg and Donald’s

(1993) F-test is applied to the models in column (3) and (4), they are obtained as 11,320 and 10,618, respectively.

These values are sufficiently bigger than the critical values of 5% level of significance in Stock and Yogo (2005)

that are 19.28 and 15.72, respectively. This reaffirms that the instrumental variables are not weak.

(c) At the bottom panel of Table 6, the DD-test is provided and it rejects the hypothesis of Cobb-Douglas produc-

tion technology given in column (3), whereas it does not reject for the model in column (4). This implies that

adding the power transform of log(Lt) on the right side does not reduce the GMM distance significantly. Here,

for the test, we let Γ = [0.00, 2.50], and before computing the DD-test, we checked the nonsingular matrix

conditions in Assumptions 7 (vi and vii) by Bartlett’s (1947) test. Specifically, we let the null hypothesis be

rank(E[Gt(γ)Z′t]) = 4 for each γ ∈ Γc(ε) and could observe that the p-values are less than 6% for every value

of γ ∈ {0.01, 0.11, . . . , 2.31, 2.41, 2.50}, ensuring Assumption 7(vi). Likewise, we separately tested the null hy-

potheses given as rank(E[Gt,0Z
′
t]) = 4, rank(E[Gt,1Z

′
t]) = 4, and rank(E[Gt,2Z

′
t]) = 4 by the same test, where

Gt,0 := [Lt, Xt,D
′
t]
′, Gt,1 := [XtLt, Xt,D

′
t]
′, and Gt,2 := [X2

t Lt, Xt,D
′
t]
′. These hypotheses are uniformly

rejected at the level of 6%, implying that the nonsingular matrix condition is ensured.

(d) The J-test at the bottom panel also rejects the model in columns (3) but does not, for the model in column (4),

that is consistent with the DD-test. Although the J-test in column (3) does not say why the orthogonality condition

violates, the DD-test ascribes the violation to the model misspecification.

(e) The negative coefficient of the quadratic log labor term in column (4) implies that the labor-augmenting tech-

nological change leads to the decline in the labor share. The negative coefficient indicates that an increase in the

labor-augmenting technology decreases the marginal revenue product of labor (MRPL) relative to the marginal rev-

enue product of capital (MRPK), as our estimate implies that MRPLt/MRPKt = (0.80− 2× 0.01× log(ALt Lt)),

where ALt is the labor-augmenting productivity shock. This makes firms substitute more toward capital and in turn

decreases the ratio of labor expenditure to the value-added, so that the labor-augmenting technological change with

our preferred functional form explains the recent decline of labor shares. �

From this empirical analysis applying the DD- and J-tests sequentially, we essentially conclude that Cobb-Douglas pro-

duction technology misspecifies the firm-level production function in the United States, that is remedied by adding

log2(Lt) to Cobb-Douglas production technology. Furthermore, the estimated production technology is consistent with

the recently discovered decline of labor shares from the empirical literature.
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6 Concluding Remarks

We provide an econometric method to estimate a correct structural model. For this, we proceed in three steps. First, we

provide the DD-test and demonstrate its omnibus power against an arbitrary nonlinear structure. We also derive the null

and local alternative limit distributions of the DD-test. Second, we approximate the nonlinear structural equation using a

polynomial function if the linear model is rejected, and provide a sequential testing procedure to consistently estimate the

degree of polynomial function. This procedure can consistently estimate the polynomial function when it is finite, with

the significance level converging to zero as the sample size tends toward infinity. These properties and their performance

relative to the J-sequential testing procedure and MSCs are also compared by simulation. Third, we provide an empirical

illustration by investigating the relationship between the value-added and its production factors using firm-level data from

the United States. Using the DD-test, we affirm that the production function has exhibited factor-biased technological

changes instead of Hicks-neutral technology presumed by a Cobb-Douglas production function.

A Appendix

A.1 Proofs

Before proving the main claims of this study, we provide some preliminary lemmas to facilitate the proofs. For notational

simplicity, we assume that F := V′Z̈Z̈′V and P̈ := Z̈Z̈′V.

Lemma A1. Given Assumptions 1, 2, and 3,

(i) Z′U = OP(
√
n),

(ii) V′V = OP(n), C0Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K′1Z = OP(n), where for j = 1, 2, . . .,

Kj := [Lj
... 0n×k] and Lj := [Lj1, . . . , L

j
n]′;

(iii) L2Z = OP(n), and K2Z = OP(n);

(iv) Z′U = oP(n). �

Lemma A2. For j = 1, 2, . . ., let d(j)
n (0; ξ0) := (∂j/∂γj)dn(γ; ξ0)|γ=0. Given Assumptions 1, 2, 3, andH0,2,

(i) d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U + 2U′K1F

−1P̈′U + U′P̈F−1(P̈′K1 + K′1P̈)F−1P̈′U;

(ii) d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U +OP(n); and

(iii) d(2)
n (0; ξ0) = 2(ξ0∗ − ξ0)2C′0Q1C0 + oP(n2). �

Lemma A3. Given Assumptions 1, 2, 3, andH0,2,

(i) D(γ=0;β)
n = {C′0Q1U}2/{nC′0Q1C0}+ oP(1); and

(ii) D(γ=0;β)
n = OP(1). �

Lemma A4. Given Assumptions 1, 2, 3, andH0,2,

(i) D(γ=0;ξ0)
n = {C′0Q1U}2/{nC′0Q1C0}+ oP(1);
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(ii) D(γ=0;ξ0)
n = OP(1). �

Lemma A5. Given Assumptions 1, 2, and 3,

(i) V′V = OP(n), C1Z = OP(n), V′Z = OP(n), Z′Z = OP(n), and K
′
1Z = OP(n), where for j = 1, 2, . . .,

Kj := [0n×1
... Cj

... 0n×k]; and

(ii) C2Z = OP(n), and K2Z = OP(n). �

Lemma A6. For j = 1, 2, . . ., d(j)
n (1; ξ1) := (∂j/∂γj)dn(γ; ξ1)|γ=1. Given Assumptions 1, 2, 3, andH0,3,

(i) d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U− 2U′K1F

−1P̈′U + U′P̈F−1(P̈′K1 + K1P̈)F−1P̈′U;

(ii) d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U +OP(n); and

(iii) d(2)
n (1; ξ1) = 2(ξ1∗ − ξ1)C′1Q1C1 + oP(n2). �

Lemma A7. Given Assumptions 1, 2, 3, andH0,3,

(i) D(γ=1;β)
n = {C′1Q1U}2/{nC′1Q1C1}+ oP(1); and

(ii) D(γ=1;β)
n = OP(1). �

Lemma A8. Given Assumptions 1, 2, 3, andH0,3,

(i) D(γ=1;ξ1)
n = {C′1Q1U}2/{nC′1Q1C1}+ oP(1); and

(ii) D(γ=1;ξ1)
n = OP(1). �

Proof of Lemma A1: (i) Z′U = [
∑

t ZtjUt]. Since E[Z2
tjU

2
t ] < E[Z4

tj ]
1/2E[U4

t ]1/2 by the Cauchy Schwarz inequality,

E[Z4
tj ] <∞, and E[U4

t ] <∞ hold by Assumption 3, we can apply the CLT and obtain the desired result.

(ii) By the definition of K1, if C′0Z = OP(n), K′1Z = OP(n). We assume that R is a generic notation for V, C0,

and Z. As R′Z = [
∑
RtjZti], the result follows by ergodicity if E[|RtjZti|] < ∞, that holds by the Cauchy-Schwarz

inequality and the fact that E[Z2
ti] <∞, E[V 2

tj ] <∞, and E[log2(Xt)] <∞ by Assumption 3.

(iii) Similarly, by the definition of K2, if L′2Z = OP(n), K′2Z = OP(n). As E[log4(Xt)] <∞ and E[Z2
ti] <∞, the

result similarly follows from ergodicity and the Cauchy-Schwarz inequality.

(iv) This simply follows from the fact that {ZtUt} is a mixingale sequence by the Assumption 1 and applying LLN.

�

Proof of Lemma A2: (i) We can obtain the first-order derivative with respect to γ as follows:

d(1)
n (0; ξ0) = −2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′1Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d/dγ)[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0).

Note that

(d/dγ)[H(0)′Z̈Z̈′H(0)]−1 = −F−1[P̈′K1 + K′1P̈]F−1, (1)
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and that P(ξ0) = Y − ξ0ι = V[ξ0∗ − ξ0, δ
′
∗]
′ + U = Vκ(ξ0) + U by assuming that κ(ξ0) := [ξ0∗ − ξ0, δ

′
∗]
′. For

notational simplicity, we suppress ξ0 in κ(ξ0). From H(0) = V and P̈ := Z̈Z̈′V, it follows that

d(1)
n (0; ξ0) =− 2(Vκ+ U)′P̈F−1K′1Z̈Z̈′(Vκ+ U)︸ ︷︷ ︸

(A)

+ (Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′(Vκ+ U)︸ ︷︷ ︸
(B)

.

We now examine each RHS component. The first component (A) can be expressed as a sum of following four compo-

nents:

(a) −2κ′VP̈F−1K′1P̈κ = −2κ′K′1Z̈Z̈′Vκ;

(b) −2κ′K′1Z̈Z̈′U;

(c) −2U′P̈F−1K′1P̈κ; and

(d) −2U′P̈F−1K′1Z̈Z̈′U.

Next, the second component (B) can also be expressed as the sum of four other components:

(a) κ′(P̈′K1 + K′1P̈)κ = 2κ′K′1P̈κ;

(b) κ′P̈′K1F
−1P̈′U + U′P̈F−1K′1P̈κ = 2κ′P̈′K1F

−1P̈′U;

(c) κ′K′1P̈F−1P̈′U + U′P̈′F−1P̈′K1κ = 2κ′K′1P̈F−1P̈′U;

(d) U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U.

By adding and organizing all these terms according to their order of convergence, we obtain the following:

(a) −2κ′K′1P̈κ+ 2κ′K′1P̈κ = 0;

(b, c) −2κ′{K′1Z̈Z̈′ + K′1P̈F−1P̈′}U = −2(ξ0∗ − ξ0)C0Q1U; and

(d) U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U− 2U′P̈F−1K′1Z̈Z̈′U.

Hence, the first-order derivative can be obtained as

d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0)C′0Q1U− 2U′P̈F−1K′1Z̈Z̈′U + U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U.

(ii) Given the result in (i), by applying the result of Lemma A1, we obtain

d(1)
n (0; ξ0) = −2(ξ0∗ − ξ0) C′0Q1U︸ ︷︷ ︸

OP(n3/2)

−2 U′P̈F−1K′1Z̈Z̈′U︸ ︷︷ ︸
OP(n)

+ U′P̈F−1[P̈′K1 + K′1P̈]F−1P̈′U︸ ︷︷ ︸
OP(n)

= −2(ξ0∗ − ξ0)C′0Q1U +OP(n).

(iii) The second-order derivative is obtained as

d(2)
n (0; ξ0) =− 2P(ξ0)′Z̈Z̈′K1[H(0)′Z̈Z̈′H(0)]−1K′1P(ξ0)− 2P(ξ0)′Z̈Z̈′H(0)[H(0)′Z̈Z̈′H(0)]−1K′2Z̈Z̈′P(ξ0)

− 4P(ξ0)′Z̈Z̈′H(0)(d/dγ)[H(0)′Z̈Z̈′H(0)]−1K′1Z̈Z̈′P(ξ0)

−P(ξ0)′Z̈Z̈′H(0)(d2/dγ2)[H(0)′Z̈Z̈′H(0)]−1H(0)′Z̈Z̈′P(ξ0),
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where

d2

dγ2
[H(0)′Z̈Z̈′H(0)]−1 =2F−1[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]F−1 − F−1[P̈′K2 + K′2Z̈Z̈′V + 2K′1Z̈Z̈′K1]F−1,

and (1) shows the specific form of (d/dγ)[H(0)′Z̈Z̈′H(0)]−1. Using these results, we arrange the terms to obtain

d(2)
n (0; ξ0) = + 4(Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1K′1Z̈Z̈′(Vκ+ U)

− 2(Vκ+ U)′{Z̈Z̈′K1F
−1P̈′ + Z̈Z̈′K1F

−1K′2Z̈Z̈′}(Vκ+ U)

− (Vκ+ U)′P̈F−1[2K′1Z̈Z̈′K1 + P̈′K2 + K′2P̈]F−1P̈′(Vκ+ U)

− 2(Vκ+ U)′P̈F−1[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]M−1P̈′(Vκ+ U).

By organizing each term according to their order of convergence and applying Lemma A1, because E[ZtUt] = 0, we can

obtain

• −2κ′{P̈′K1F
−1K1 + K′2Z̈Z̈′}Vκ+ 4κ′[P̈′K1 + K′1P̈]F−1K′1P̈κ− 2κ′[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]κ+

2κ′[2K′1Z̈Z̈′K1 +K′2P̈+ P̈′K2]κ = 2(κ′K′1Z̈Z̈′K1κ−2κ′K′1P̈M−1P̈′κ) = 2(ξ0∗−ξ0)2C′0Q1C0 = OP(n2).

• −4κ′P̈′K1F
−1K′1Z̈Z̈′U + 4κ′[P̈′K1 + K′1P̈]F−1K′1Z̈Z̈′U− 4κ′[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]F−1P̈′U−

2κ′K′2Z̈Z̈′U−2κ′P̈′K2F
−1P̈′U = −2(ξ0∗−ξ0)[L′2Q1U−2C′0Q1K1F

−1P̈′U+2C′0P̈F−1K′1Q1U] = oP(n2).

• −2U′Z̈Z̈′K1F
−1K′1Z̈Z̈′U−2U′P̈F−1K′2Z̈Z̈′U+4U′P̈(P̈′V)−1[P̈′K1 +K′1P̈]F−1K′1ZMnZ

′U+2U′P̈F−1

{[P̈′K1 + K′1P̈]F−1[P̈′K1 + K′1P̈]−K′1Z̈Z̈′K1 − P̈′K2}F−1P̈′U = oP(n2).

Therefore, by adding all these terms, we can have d(2)
n (0; ξ0) = 2(ξ0∗ − ξ0)2C′0Q1C0 + oP(n2). �

Proof of Lemma A3: (i) By applying a second-order Taylor expansion to dn(γ;β) and optimizing with respect to γ, we

have

infγ{dn(γ;β)− dn(0;β)} = −{d
(1)
n (0;β)}2

2d
(2)
n (0;β)

+ oP(1).

Given this, we note that d(1)
n (0;β) := (d/dγ)dn(0;β) = 2βC′0Q1U = OP(n3/2) andL(2)

n (0;β) := (d2/dγ2)Ln(0;β) =

β2C′0Q1C0 − βL′2Q1U = OP(n2). From this, it follows that

D(γ=0;β)
n = − inf

γ∈Γ
n−1{dn(γ;β)− dn(0;β)} =

{n−3/2βC′0Q1U}2

n−2(β2C′0Q1C0 − βL′2Q1U)
+ oP(1) =

{C′0Q1U}2

nC′0Q1C0y
+ oP(1),

because L′2Q1U = oP(n2), as shown in (ii).

(ii) We separate the proof into three parts. First, we note that C′0Q1U = C′0Z̈(I − Z̈′V(V′Z̈Z̈′V)−1V′ Z̈)Z̈′U.

Lemmas A1(i, ii) and Assumption 3 imply that C′0Q1U = OP(n3/2). Similarly, Lemmas A1(ii) and Assumption 3

imply that C′0Q1C0 = OP(n2). Further, Lemmas A1(ii, iii, and iv) and Assumption 3 imply that L′2Q1U = oP(n2). By

combining all these results, we obtain the desired result. �
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Proof of Lemma A4: (i) By applying a second-order Taylor expansion to dn(·; ξ0) and optimizing with respect to γ, we

have

inf
γ∈Γ
{dn(γ; ξ0)− dn(0; ξ0)} = −{d

(1)
n (0; ξ0)}2

2d
(2)
n (0; ξ0)

+ oP(n) = −{2(ξ0∗ − ξ0)C′0Q1U}2

4(ξ0∗ − ξ0)2C′0Q1C0
+ oP(n).

Therefore,

D(γ=0;ξ0)
n = −infγn

−1{dn(γ; ξ0)− dn(0; ξ0)} =
{C′0Q1U}2

nC′0Q1C0
+ oP(1).

(ii) The desired result follows from Lemmas A3 and A4(i). �

Proof of Lemma A5: The proof of this lemma is similar to that of Lemma A1. �

Proof of Lemma A6: (i) We can obtain the first-order derivative with respect to γ as follows:

d(1)
n (1; ξ1) =− 2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1).

Note that

(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1 = −F−1[P̈′K1 + K
′
1P̈]F−1, (2)

and that P̃(ξ1) = Y − ξ1X = V[ξ0∗, ξ1∗ − ξ1,η
′
∗]
′ + U = Vζ(ξ1) + U by assuming that ζ(ξ1) := [ξ0, ξ1∗ − ξ1,η

′
∗]
′.

For notational simplicity, we further suppress ξ1 of ζ(ξ1). From this, it follows that since H̃(1) = V,

d(1)
n (1; ξ1) = −2(Vζ + U)′P̈F−1K

′
1Z̈Z̈′(Vζ + U) + (Vζ + U)′P̈F−1[P̈′K1 + K

′
1P̈]F−1P̈′(Vζ + U).

Note that this is the same as d(1)
n (0; ξ0) in Lemma A2(i) when we replace ζ, C1, and K1 with κ, C0, and K1, respectively.

(ii) From (i) and Lemmas A1, A2 and A5, we can infer that d(1)
n (1; ξ1) = −2(ξ1∗ − ξ1)C′1Q1U +OP(n).

(iii) The second-order derivative is

d(2)
n (1; ξ1) =− 2P̃(ξ1)′Z̈Z̈′K1[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
1P̃(ξ1)− 2P̃(ξ1)′Z̈Z̈′H̃(1)[H̃(1)′Z̈Z̈′H̃(1)]−1K

′
2Z̈Z̈′P̃(ξ1)

− 4P̃(ξ1)′Z̈Z̈′H̃(1)(d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1K
′
1Z̈Z̈′P̃(ξ1)

− P̃(ξ1)′Z̈Z̈′H̃(1)(d2/dγ2)[H̃(1)′Z̈Z̈′H̃(1)]−1H̃(1)′Z̈Z̈′P̃(ξ1),

where

d2

dγ2
[H̃(1)′Z̈Z̈′H̃(1)]−1 =− F−1[V′Z̈Z̈′K2 + K

′
2Z̈Z̈′V + 2K

′
1Z̈Z̈′K1]F−1

+ 2F−1[V′Z̈Z̈′K1 + K
′
1Z̈Z̈′V]F−1[V′Z̈Z̈′K1 + K

′
1Z̈Z̈′V]F−1,
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and (2) shows the specific form of (d/dγ)[H̃(1)′Z̈Z̈′H̃(1)]−1. By using these results and arranging the terms, we obtain

d(2)
n (1; ξ1) = + 4(Vζ + U)′P̈F−1[P̈′K1 + K

′
1P̈]F−1K

′
1Z̈Z̈′(Vζ + U)

− 2(Vζ + U)′{Z̈Z̈′K1F
−1P̈′ + Z̈Z̈′K1F

−1K
′
2Z̈Z̈′}(Vζ + U)

− (Vζ + U)′yP̈F−1[2K
′
1Z̈Z̈′K1 + P̈′K2 + K

′
2P̈]F−1V′Z̈Z̈′(Vζ + U)

− 2(Vζ + U)′yP̈F−1[P̈′K1 + K
′
1P̈]F−1[P̈′K1 + K

′
1P̈]F−1V′Z̈Z̈′(Vζ + U).

If we reorganize the terms according to their order of convergence by applying Lemmas A1 and A5 and the fact E[ZtUt] =

0, we obtain

• −2ζ′{P̈′K1F
−1K1 + K

′
2Z̈Z̈′}Vζ + 4ζ′[P̈′K1 + K

′
1P̈]F−1K

′
1P̈ζ − 2ζ′[P̈′K1 + K

′
1P̈]F−1[P̈′K1 + K

′
1P̈]ζ +

2ζ′[2K
′
1Z̈Z̈′K1 + K

′
2P̈ + P̈′K2]ζ = 2(ζ′K

′
1Z̈Z̈′K1ζ− 2ζ′K

′
1P̈M−1P̈′ζ) = 2(ξ1∗− ξ1)2C′1Q1 C1 = OP(n2).

• −4ζ′P̈′K1F
−1K

′
1Z̈Z̈′U + 4ζ′[P̈′K1 + K

′
1P̈]F−1K

′
1Z̈Z̈′U− 4ζ′[P̈′K1 + K

′
1P̈]F−1[P̈′K1 + K

′
1P̈]F−1 P̈′U−

2ζ′K
′
2Z̈Z̈′U − 2ζ′P̈′K2F

−1P̈′U = −2(ξ1∗ − ξ1)[C′2Q1U − 2C′1Q1K1F
−1P̈′U + 2C′1P̈F−1K

′
1Q1 U] =

oP(n2).

• −2U′Z̈Z̈′K1F
−1K

′
1Z̈Z̈′U−2U′P̈F−1K

′
2Z̈Z̈′U+4U′P̈(P̈′V)−1[P̈′K1+K

′
1P̈]F−1K

′
1Z̈Z̈′U+2U′P̈F−1{[P̈′

K1 + K
′
1P̈]F−1[P̈′K1 + K

′
1P̈]−K

′
1Z̈Z̈′K1 − P̈′K2}F−1P̈′U = oP(n2).

Therefore, we combine all these terms and obtain d(2)
n (1; ξ1) = 2(ξ1∗ − ξ1)2C′1yQ1C1 + oP(n2). �

Proof of Lemma A7: (i) By applying a second-order Taylor expansion to dn(γ;β) and optimizing with respect to γ, we

have

infγ∈Γ{dn(γ;β)− dn(1;β)} = −{d
(1)
n (1;β)}2

2d
(2)
n (1;β)

+ oP(n) = − {βC′1Q1U}2

β2C′1Q1C1 − βC′2Q1U
+ oP(n),

where d(1)
n (1;β) := (d/dγ)dn(1;β) = −2βC′1Q1U = OP(n3/2) and d(2)

n (1;β) := (d2/dγ2)dn(1;β) = −β2C′1Q1C1+

βC′2Q1U = OP(n2). In (ii), we show that C′2Q1U = oP(n), so that

D(γ=1;β)
n = −infγ∈Γn

−1{dn(γ;β)− dn(1;β)} =
{n−3/2βC′1Q1U}2

n−2(β2C′1Q1C1 − βC′2Q1U)
+ oP(1) =

{C′1Q1U}2

nC′1Q1C1
+ oP(1),

as desired.

(ii) We proceed with the proof in three components. First, C′1Q1U = C′1Z̈(I − Z̈′V(V′Z̈Z̈′V)−1 V′Z̈)Z̈′U.

Lemmas A1(i), 3, and A5(i) imply that C′1Q1U = OP(n3/2). Similarly, Lemma A5(i) and Assumption 3 imply that

C′1Q1C1 = OP(n2). Furthermore, Lemmas A1(iv), A5(i and ii) and Assumption 3 imply that C′2Q1U = oP(n2). By

combining all these results, we obtain D(γ=1;β)
n = OP(1). �

Proof of Lemma A8: (i) By applying a second-order Taylor expansion to dn(γ; ξ1) and optimizing with respect to γ, we

have

infγ∈Γ{dn(γ; ξ1)− dn(1; ξ1)} = −{d
(1)
n (1; ξ1)}2

2d
(2)
n (1; ξ1)

+ oP(n) = −{2(ξ1∗ − ξ1)C′1Q1U}2

4(ξ1∗ − ξ1)2C′1Q1C1
+ oP(n)
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by Lemmas A6(ii and iii). Therefore, it follows that

D(γ=1;ξ1)
n = −infγ∈Γn

−1{dn(γ; ξ1)− dn(1; ξ1)} =
{n−3/2(ξ1∗ − ξ1)C′1Q1U}2

n−2(ξ1∗ − ξ1)2C′1Q1C1
+ oP(1) =

{C′1Q1U}2

nC′1Q1C1
+ oP(1),

as desired.

(ii) The desired result follows from Lemmas A7 and A8(i). �

We now prove the main claims of this study.

Proof of Lemma 1: We can apply the uniform law of large numbers (ULLN) to each row of {n−1/2
∑n

t=1X
γ
t Zt}, so

that for each j, we have

supγ∈Γ

∣∣∣∣n−1
n∑
t=1

Xγ
t Zt,j − E[Xγ

t Zt,j ]

∣∣∣∣ P→ 0, (3)

where Zt,j is the jth-row element of Zt. This result mainly follows from theorem 3(a) of Andrews (1992). In particular,

Assumption 2 implies that Γ is totally bounded; for each j, E[|Xγ
t Zt,j |] ≤ E[M2

t ] < ∞ by Assumption 3, so that for

each γ ∈ Γ, the ergodic theorem holds for n−1
∑n

t=1X
γ
t Zt,j ; and finally, X(·)

t Zt,j is Lipschitz continuous because for

each j,

|Xγ
t Zt,j −X

γ′

t Zt,j | ≤ supγ∈Γ|X
γ
t Lt| · |Zt,j | · |γ − γ′| ≤M2

t |γ − γ′|, (4)

where M2
t = OP(1). These three conditions are the assumptions required for theorem 3(a) of Andrews (1992) to prove

the ULLN. This also implies that E[X
(·)
t Vt] is continuous on Γ. Note that X(γ)′Q1U = X(γ)′Z̈[I− Z̈′VF−1V′Z̈]Z̈′U

to obtain supγ∈Γ |n−3/2X(γ)′Q1U − n−1/2E[Xγ
t Z̃′t]J1Z̃

′U| = oP(1), because Mn
P→ M0 and n−1

∑n
t=1 ZtV

′
t

P→

E[ZtV
′
t] by ergodicity, where Z̃ := M

1/2
0 Z. Furthermore, we can apply the CLT to n−1/2Z′U, so that n−1/2Z′U

A∼

N(0,Σ), implying that n−1/2X(·)′Q1U ⇒ G(·), where G(·) is a Gaussian stochastic process whose covariance kernel

is identical to κ(·, ·).

Second, we apply the ULLN to n−2X(·)′Q1X(·). We separate our proof into two parts. We first show that

supγ∈Γ |n−2X(γ)Z̈Z̈′X − E[Xγ
t Z′t]M0E[Z′tX

γ
t ]| = oP(1), and then show that supγ∈Γ |n−2X(γ)′ZGn Z′X(γ) −

E[Xγ
t Z′t]G0E[ZtX

γ
t ]| = oP(1), where Gn := MnZ

′VF−1V′ZMn and G0 := M0E[ZtV
′
t](E [VtZ

′
t]M0E[ZtV

′
t])
−1

E[VtZ
′
t]M0.

For the first part, we note the following triangle inequality:

sup
γ∈Γ
|n−2X(γ)′Z̈Z̈′X(γ)− E[Xγ

t Z̃′t]E[Z̃tX
γ
t ]| ≤ sup

γ∈Γ
|(n−1X(γ)′Z− E[Xγ

t Zt])Mnn
−1Z′X(γ)|

+ sup
γ∈Γ
|E[Xγ

t Zt](Mn −M0)n−1Z′X(γ)|+ sup
γ∈Γ
|E[Xγ

t Z̃t](n
−1Z̃′X(γ)− E[Z̃tX

γ
t ])|.

supγ∈Γ |(n−1X(γ)′Z)− E[Xγ
t Z′t]| = oP(1) by (3), and |Mn −M0| = oP(1) by Assumption 1. Moreover, we note that

supγ∈Γ |n−1X(γ)′Z| = OP(1) by Assumption 3, ensuring that supγ∈Γ |E[Xγ
t Z′t]| = O(1). Thus, it now follows that

supγ∈Γ |n−2X(γ)′Z̈Z̈′X(γ)− E[Xγ
t Z̃′t]E[Z̃tX

γ
t ]| = oP(1).
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For the second part, note that

sup
γ∈Γ
|n−2X(γ)′yZGnZ

′X(γ)− E[Xγ
t Z′t]G0E[ZtX

γ
t ]| ≤ sup

γ∈Γ
|(n−1X(γ)′Z− E[Xγ

t Zt])Gnn
−1Z′X(γ)|

+ sup
γ∈Γ
|E[Xγ

t Zt](Gn −G0)n−1Z′X(γ)|+ sup
γ∈Γ
|E[Xγ

t Zt]G0(n−1Z′X(γ)− E[ZtX
γ
t ])|.

Here, Gn = G0 + oP(1), because |Mn −M0| = oP(1) and n−1Z′V = E[ZtV
′
t] + oP(1) by Assumptions 1, 3, and the

ergodicity. Therefore, supγ∈Γ |n−2X(γ)′ZGnZ
′X(γ)− E[Xγ

t Z′t]G0E[ZtX
γ
t ]| = oP(1), as for the first part.

From these two parts, it follows that supγ∈Γ |n−2X(γ)′Q1X(γ) − E[Xγ
t Z̃′t]J1E[Z̃tX

γ
t ]| = oP(1), by noting that

M
1/2
0 J1M

1/2
0 = M0 −G0, and the desired result follows from the definition of σ2

1(·). �

Proof of Lemma 2: The desired result follows from Lemmas A3 and A4. Specifically, we apply the martingale CLT and

continuous mapping theorem to derive the asymptotic null distribution of Z0. �

Proof of Lemma 3: The desired result follows from Lemmas A7 and A8. Specifically, we apply the martingale CLT and

continuous mapping theorem to derive the asymptotic null distribution of Z1. �

Proof of Lemma 4: (i) Letting γ to converge to zero,

plim
γ→0

N (2)
n (γ) = plim

γ→0
2{(d/dγ)X(γ)′Q1U}2 + 2{X(γ)′Q1(d/dγ)X(γ)} = 2{C0Q1U}2,

because plimγ→0(d/dγ)X(γ) = C0 and plimγ→0X(γ)′Q1U = ι′Q1U = 0. Furthermore,

plim
γ→0

D(2)
n (γ) = plim

γ→0
2n{(d2/dγ2)X(γ)′Q1X(γ)}2 + plim

γ→0
2n{(d/dγ)X(γ)′Q1(d/dγ)X(γ)} = 2nC0Q1C0,

because plimγ→0(d/dγ)X(γ) = C0 and plimγ→0(d2/dγ2)X(γ)′Q1U = L′2Q1ι = 0.

We now let γ to converge to 1.

plim
γ→1

N (2)
n (γ) = plim

γ→1
2{(d/dγ)X(γ)′Q1U}2 + 2{X(γ)′Q1(d/dγ)X(γ)} = 2{C1Q1U}2,

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→1X(γ)′Q1U = X′Q1U = 0. Furthermore,

plim
γ→1

D(2)
n (γ) = plim

γ→1
2n{(d2/dγ2)X(γ)′Q1X(γ)}2 + plim

γ→1
2n{(d/dγ)X(γ)′Q1(d/dγ)X(γ)} = 2nC1Q1C1,

because plimγ→1(d/dγ)X(γ) = C1 and plimγ→0(d2/dγ2)X(γ)′Q1U = C′2Q1X = 0. �

Proof of Theorem 1: From Lemma 4, we have

sup
γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
≥ max

[
1

n

{C′0Q1U}2

C′0Q1C0
,

1

n

{C′1Q1U}2

C′1Q1C1

]
.
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Thus, the desired result follows from Lemmas 1, 2, and 3. �

Proof of Theorem 2: (i) For notational simplicity, for each γ ∈ Γ, we assume that g(γ) := J1E[Z̃tX
γ
t ] and h :=

J1E[Z̃tm(Xt)]. Note that from (9), it follows that

d0 − d(γ) =

{
h′g(γ)√

h′h
√

g(γ)′g(γ)

}2

(h′h),

so that d0 − d(·) ≥ 0. Therefore, if supγ∈Γ(d0 − d(γ)) = 0, it implies that c(·) := 〈h,g(·)〉 ≡ 0.

We prove the given claim by contradiction. Now, assume that c(·) ≡ 0 on Γ. From the condition that J1E[Z̃tm(Xt)] 6=

0, it follows that h 6= 0, and so g(·) ≡ 0 from the assumption that c(·) ≡ 0 and E[Z̃tX
(·)
t ] ≡ 0. If we let M(·, ·) de-

note the moment generating function of (log(Xt), Z̃
′
t)
′, viz., M(γ, τ ) := E[exp(γ log(Xt) + τ ′Z̃t)], then for each γ,

E[Xγ
t Z̃t] = ∇τM(γ, τ )|τ=0, so that E[Z̃tX

(·)
t ] ≡ 0 implies that E[Z̃t| log(Xt)] = 0 with probability 1 by applying

theorem 1 of Bierens (1982) to the moment generating function. Note that log(·) is a one-to-one mapping from R+ to R,

so that it is a measure preserving transformation. This implies that E[Z̃t|Xt] = 0 with probability 1. We now multiply

m(Xt) to each side and apply the law of iterated expectation: E[m(Xt)E[Z̃t|Xt]] = E[m(Xt)Z̃t] = 0. Note that this

is a contradiction to the condition that J1E[Z̃tm(Xt)] 6= 0. Therefore, for some γ̃, c(γ̃) 6= 0, and this implies that

d0 − d(γ̃) > 0.

(ii) Because dn(β, γ) = (Y−βX(γ))′Q1(Y−βX(γ)) and Y = Vς∗+n
−1/2s+U, where s := (s(X1), . . . , s(Xn))′,

we have

Dn = sup
γ∈Γ

{X(γ)′Q1Y}2

nX(γ)′Q1X(γ)
= sup

γ∈Γ

{n−2X(γ)′Q1s + n−3/2X(γ)′Q1U)}2

n−2X(γ)′Q1X(γ)
.

From Lemma 1, we have n−3/2X(·)′Q1U ⇒ G(·) and supγ∈Γ |n−2X(γ)′Q1X(γ) − σ2
1(γ)| P→ 0, where σ2

1(γ) :=

E[Xγ
t Z̃′t]J1E[Z̃ts(Xt)]. Note that n−2X(γ)′Q1s = n−2X(γ)′Z̈Z̈′s − n−2X(γ)′Z̈Z̈′VF−1V′Z̈ Z̈′s. In the proof of

Lemmas 1 and A1, we saw that supγ∈Γ |n−1X(γ)′ Z − E[Xγ
t Zt]|

P→ 0 and n−1V′Z
P→ E[VtZ

′
t]. Furthermore, if

we apply the ergodic theorem, n−1Z′s
P→ E[Zts(Xt)] by the moment condition that E[s2(Xt)] < ∞. Thus, we have

supγ∈Γ |n−2Z(γ)′Q1s −E[Xγ
t Z̃t]J1E[Z̃ts(Xt)]|

P→ 0. Therefore, it follows that

Dn ⇒ sup
γ∈Γ

{E[Xγ
t Z̃t]J1E[Z̃ts(Xt)] + G(γ)}2

σ2
1(γ)

= sup
γ∈Γ
{ν1(γ) + Z1(γ)}2

by the definitions of ν1(·) := E[X
(·)
t Z̃t]J1E[Z̃ts(Xt)]/σ1(·) and Z1(·) := G(·)/σ(·). This completes the proof. �

Proof of Theorem 3: (i) The proof is the same as that of Theorem 1.
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(ii) We first note from (10) that

n−1dn(ξ̃0,n, δ̃n, β0, γ̃n)

= inf
γ∈Γ

[n−1/2U′Z̈− β∗
√
n(γ − γ∗)n−1D(γ∗)

′Z̈]J1[n−1/2Z̈′U− β∗
√
n(γ − γ∗)n−1Z̈′D(γ∗)] + oP(1)

⇒ inf
s

[U − β∗sd(γ∗)]
′J1[U − β∗sd(γ∗)]

by noting that X(γ) − X(γ∗) = D(γ∗)(γ − γ∗) + oP((γ − γ∗)); Q1 = Z̈(J1 + oP(1))Z̈′; J1 is idempotent; and

n−1D(·)′Z̈ P→ E[X
(·)
t log(Xt)Z̃t] uniformly on Γ by the ULLN. Likewise, we note from (11) that

inf
γ∈Γ

n−1dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ)

= inf
γ∈Γ

[n−1/2U′Z̈− β∗
√
n(γ − γ∗)n−1D(γ∗)

′Z̈]H(γ)[n−1/2Z̈′U− β∗
√
n(γ − γ∗)n−1Z̈′D(γ∗)] + oP(1)

= inf
γ∈Γ

[n−1/2U′Z̈− β∗
√
n(γ − γ∗)n−1D(γ∗)

′Z̈]H(γ∗)[n
−1/2Z̈′U− β∗

√
n(γ − γ∗)n−1Z̈′D(γ∗)] + oP(1)

⇒ inf
s

[U − β∗sd(γ∗)]
′H(γ∗)[U − β∗sd(γ∗)]

by further noting that P(γ∗) = Z̈(H(γ∗) + oP(1))Z̈′. Here, the second equality holds by noting that

dn(β, γ) := dn(ξ̂0,n(β, γ), δ̂n(β, γ), β, γ)

= [U− (β − β∗)X(γ)− β∗(X(γ)−X(γ∗))]
′Q1[U− (β − β∗)X(γ)− β∗(X(γ)−X(γ∗))]

= [U− (β − β∗)X(γ)− β∗(X(γ)−X(γ∗))]
′Q1[U− (β − β∗)X(γ)− β∗(X(γ)−X(γ∗))] + oP(n−1),

where we let (ξ̂0,n(β, γ), δ̂n(β, γ)) := dn(ξ0, δ, β, γ). Here, we further use that X(γ) = X(γ∗) + D(γ∗)(γ − γ∗) +

oP((γ − γ∗)) to obtain that

dn(β, γ) = [U− (β − β∗)X(γ∗)− β∗(X(γ)−X(γ∗))]
′Q1[U− (β − β∗)X(γ∗)− β∗(X(γ)−X(γ∗))] + oP(n−1),

so that if we optimize this with respect to β, it follows that β̂n(γ) = β∗ + (X(γ)′Q1X(γ))−1X(γ)′Q1U and

dn(β̂n(γ), γ)

= [U− β∗(X(γ)−X(γ∗))]
′[Q1 −Q1X(γ∗)(X(γ∗)

′Q1X(γ∗))
−1X(γ∗)

′Q1][U− β∗(X(γ)−X(γ∗))] + oP(n−1)

= [U− β∗(γ − γ∗)D(γ∗)]
′Z̈H(γ∗)Z̈

′[U− β∗(γ − γ∗)D(γ∗)] + oP(n−1).

We now note that dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ) = dn(β̂n(γ), γ) + oP(n−1), leading to the second equality.
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Therefore, it now follows that

Dn = n−1dn(ξ̃0,n, δ̃n, β0, γ̃n)− inf
γ∈Γ

n−1dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ)

⇒ inf
s

[U − β∗sd(γ∗)]
′J1[U − β∗sd(γ∗)]− inf

s
[U − β∗sd(γ∗)]

′H(γ∗)[U − β∗sd(γ∗)] =
{g(γ∗)

′K(γ∗)U}2

g(γ∗)′K(γ∗)g(γ∗)
,

whose distribution is the same as that of Z2
2 (γ∗) as desired. �

Proof of Theorem 4 (i) For each (β∗, γ∗) ∈ Υ0, we can rewrite ξ0∗ + E′tδ∗ + β∗X
γ∗
t as a linear model of (1, Xt,D

′
t)
′,

so that Dn ⇒ supγ∈ΓZ2
1 (γ) uniformly on Υ0, implying that lim supn→∞ sup(β∗,γ∗)∈Υ Pω∗(Dn > cv1(α)) = α.

(ii) Before proving the statement, we note that if we let νn(·) := n1/2{n−1X(·)′Z̈J1 − g(·)},

n−1/2J1Z̈
′(X(·)−X(◦)) =

√
n{g(·)− g(◦)}+ νn(·)− νn(◦) = d(◦)4n +42

nO(n−1/2) + νn(·)− νn(◦), (5)

where4n translates
√
n(·−◦), and the second equality follows from the fact that g(·)−g(◦) = d(◦)(·−◦)+O(1)(·−◦)2

and that for each j = 1, 2, . . . , p, E[Zt,j log2(Xt)X
(·)
t ] < ∞ uniformly on Γ by Assumptions 1(iii) and 3, leading

to the uniformly bounded second-order derivative of g(·) on Γc(ε). Furthermore, νn(·) converges to a multivariate

Gaussian process by applying a FCLT. Therefore, if we let dn(ξ̃0,n, δ̃n, β0, γ̃n;β∗, γ∗) := dn(ξ̃0,n, δ̃n, β0, γ̃n) to indicate

the dependence on the unknown parameters of dn(ξ̃0,n, δ̃n, β0, γ̃n),

dn(ξ̃0,n, δ̃n, β0, γ;β∗, γ∗) = [U− β∗(X(γ)−X(γ∗))]
′Q1[U− β∗(X(γ)−X(γ∗))]

underH′0. We now note that n−1/2Z̈′U = OP(1), Q1 = Z̈(J1 + oP(1))Z̈′, and (3), so that underH′0,

n−2dn(ξ̃0,n, δ̃n, β0, ·;β∗, ◦) = [n−1Z̈′U− β∗n−1Z̈′(X(·)−X(◦))]′Q1[n−1Z̈′U− β∗n−1Z̈′(X(·)−X(◦))]

= β2
∗ [E[Z̃tX

(·)
t ]− E[Z̃tX

(◦)
t ]]′J1[E[Z̃tX

(·)
t ]− E[Z̃tX

(◦)
t ]] + oP(1)

uniformly on Γc(ε). Therefore, the right side is oP(1) if (·) = (◦) uniformly on Γc(ε), implying that if we let γ̃n(γ∗) :=

arg infγ∈Γc(ε) dn(ξ̃0,n, δ̃n, β0, γ;β∗, γ∗), then γ̃n(◦) − ◦ = oP(1) uniformly on Γc(ε), so that ‖νn(γ̃n(◦)) − νn(◦)‖ =

oP(1). Next, we note that if we let Un(·, ◦) := n−1/2Z̈′U+νn(·)−νn(◦), then Un(γ̃n(◦), ◦) = n−1/2Z̈′U+νn(γ̃n(◦))−

νn(◦) = n−1/2Z̈′U + oP(1)

n−1dn(ξ̃0,n, δ̃n, β0, γ̃n(◦);β∗, ◦)

= [n−1/2Z̈′U− β∗n−1/2Z̈′(X(γ̃n(◦))−X(◦))]′Q1[n−1/2Z̈′U− β∗n−1/2Z̈′(X(γ̃n(◦))−X(◦))]

= [Un(γ̃n(◦), ◦)− β∗{d(◦)4̃n + 4̃2
nO(n−1/2)}]′J1[Un(γ̃n(◦), ◦)− β∗{d(◦)4̃n + 4̃2

nO(n−1/2)}] + oP(1)

= [n−1/2Z̈′U− β∗{d(◦)4̃n + 4̃2
nO(n−1/2)}]′J1[n−1/2Z̈′U− β∗{d(◦)4̃n + 4̃2

nO(n−1/2)}] + oP(1),
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where ∆̃n :=
√
n(γ̃n(◦)− ◦) and γ̃n(◦) satisfies the following asymptotic first-order condition:

[n−1/2Z̈′U− β∗{d(◦)4̃n + 4̃2
nO(n−1/2)}]′J1[−β∗{d(◦) + 4̃nO(n−1/2)}] = oP(1).

If we solve for ∆̃n from this condition, it follows that ∆̃n = β−1
∗ (d(◦)′J1d(◦))−1(d(◦)′J1n

−1/2Z̈′U) + oP(1) ⇒

β−1
∗ (d(◦)′J1d(◦))−1(d(◦)′J1U). That is, ∆̃n is OP(1) uniformly on Γc(ε), so that

n−1dn(ξ̃0,n, δ̃n, β0, γ̃n(◦);β∗, ◦)⇒ U ′K(◦)U . (6)

This null weak limit is free of β∗, although it has different null limit distributions for different γ∗’ys.

Next, we let dn(β, γ;β∗, γ∗) := dn(β, γ) to indicate the dependence of the unknown parameters and note that

n−2dn(β, γ;β∗, γ∗) =[n−1Z̈′U− (β − β∗)n−1Z̈′X(γ)− β∗(n−1Z̈′X(γ)− n−1Z̈′X(γ∗))]
′

× (J1 + oP(1))[n−1Z̈′U− (β − β∗)n−1Z̈′X(γ)− β∗(n−1Z̈′X(γ)− n−1Z̈′X(γ∗))],

so that if we note that n−1/2Z̈′U = OP(1), Q1 = Z̈(J1 + oP(1))Z̈′, and (3),

n−2dn(�, ·; ?, ◦) = [(� − ?)E[Z̃tX
(·)
t ]+(?)(E[Z̃tX

(·)
t ]− E[Z̃tX

(◦)
t ])]′

× J1[(� − ?)E[Z̃tX
(·)
t ] + (?)(E[Z̃tX

(·)
t ]− E[Z̃tX

(◦)
t ])] + oP(1)

uniformly on Υc(ε). Therefore, the right side is oP(1) if (�, ·) = (?, ◦) uniformly on Υc(ε), implying that if we let

(β̂n(β∗, γ∗), γ̂n(β∗, γ∗)) := arg inf(β,γ)∈Υc(ε) dn(β, γ;β∗, γ∗), then ‖(β̂n(?, ◦), γ̂n(?, ◦)) − (?, ◦)‖ = oP(1) uniformly

on Υc(ε), so that ‖νn(γ̃n(?, ◦))− νn(◦)‖ = oP(1).

We also let dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ;β∗, γ∗) = dn(ξ̂0,n(γ), δ̂n(γ), β̂n(γ), γ) to emphasize its dependence on the

unknown parameter. We further let dn(·;β∗, ◦) := dn(ξ̂0,n(·), δ̂n(·), β̂n(·), ·;β∗, ◦) and note that it follows from (11) that

dn(·;β∗, ◦) = [Z̈′U− β∗(Z̈′X(·)− Z̈′X(◦))]′(H(·) + oP(1))[Z̈′U− β∗(Z̈′X(·)− Z̈′X(◦))]

by noting that P(·) = Z̈′(H(·) + oP(1))Z̈. If we now use (5) and let γ̂n(◦) := γ̂n(β∗, ◦) for simplicity,

n−1dn(γ̂n(◦);β∗, ◦)

=[Un(γ̂n(◦), ◦)− β∗{d(◦)4̂n + 4̂2
nO(n−1/2)}]′H(γ̂n(◦))[Un(γ̂n(◦), ◦)− β∗{d(◦)4̂n + 4̂2

nO(n−1/2)}] + oP(1)

=[n−1/2Z̈′U− β∗{d(◦)4̂n + 4̂2
nO(n−1/2)}]′H(γ̂n(◦))[n−1/2Z̈′U− β∗{d(◦)4̂n + 4̂2

nO(n−1/2)}] + oP(1),
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where ∆̂n :=
√
n(γ̂n(◦)− ◦) and γ̂n(◦) asymptotically satisfies the first-order condition:

[n−1/2Z̈′U− β∗{d(◦)4̂n + 4̂2
nO(n−1/2)}]′H(γ̂n(◦))[−β∗{d(◦) + 4̂nO(n−1/2)}] = oP(1).

If we solve for ∆̂n from this condition, it follows that ∆̂n = β−1
∗ (d(◦)′H(γ̂(◦))d(◦))−1(d(◦)′H(γ̂(◦))n−1/2Z̈′U) +

oP(1) ⇒ β−1
∗ (d(◦)′H(◦)d(◦))−1(d(◦)′H(◦)U). That is, ∆̂n is OP(1) uniformly on Γc(ε). Here, |γ̂n(◦) − ◦| = oP(1)

uniformly on Γc(ε), implying that H(γ̂n(◦)) = H(◦) + oP(1) uniformly on Γc(ε). Therefore,

n−1dn(γ̂n(◦);β∗, ◦)⇒ U ′(H(◦)−H(◦)d(◦)(d(◦)′H(◦)d(◦))−1d(◦)′H(◦))U (7)

using the fact that H(◦) is idempotent uniformly on Γc(ε). As for n−1dn(ξ̃0,n, δ̃n, β0, γ̃n(◦);β∗, ◦), the null weak limit

of n−1dn(γ̂n(◦);β∗, ◦) is free of β∗, although it has different null limit distributions for different γ∗’s.

Finally, we now obtain the null limit distribution of Dn by emphasizing the dependence of Dn on (β∗, γ∗) via

Dn(β∗, γ∗). If we now combine (6) with (7),

Dn(·, ◦) = n−1dn(ξ̃0,n, δ̃n, β0, γ̃n(◦); ·, ◦)− n−1dn(γ̂n(◦); ·, ◦)⇒ Z2
2 (◦)

underH′0 by the fact that the null weak limits of n−1dn(ξ̃0,n, δ̃n, β0, γ̃n(◦);β∗, ◦) and n−1dn(γ̂n(◦);β∗, ◦) are free of β∗.

This implies the desired result.

(iii) We note that

sup
(β∗,γ∗)∈B×Γ

Pω∗(Dn > cv(α)) = max

[
sup

(β∗,γ∗)∈Υ0

Pω∗(Dn > cv1(α)), lim
ε↓0

sup
(β∗,γ∗)∈Υc(ε)

Pω∗(Dn > cv2(α))

]
,

and

lim sup
n→∞

max

[
sup

(β∗,γ∗)∈Υ0

Pω∗(Dn > cv1(α)), lim
ε↓0

sup
(β∗,γ∗)∈Υc(ε)

Pω∗(Dn > cv2(α))

]

≤ max

[
lim sup
n→∞

sup
(β∗,γ∗)∈Υ0

Pω∗(Dn > cv1(α)), lim sup
n→∞

lim
ε↓0

sup
(β∗,γ∗)∈Υc(ε)

Pω∗(Dn > cv2(α))

]
≤ α,

where the last inequality follows from (i) and (ii). Therefore, it follows that lim supn→∞ sup(β∗,γ∗)∈B×Γ Pω∗(Dn >

cv(α)) ≤ α. �

Proof of Theorem 5: We first note that

1

n3/2
X(·)′Q1U =

1

n
X(·)′Z̈

(
I− 1

n
Z̈′V

(
1

n2
V′Z̈Z̈′V

)−1 1

n
V′Z̈

)
1√
n

Z̈′U

⇒ [E[X
(·)
t S̃′t],0

′y]

(
I− [E[VtS̃

′
t],0

′]′
(
E[VtS̃

′
t]E[S̃tV

′
t]
)−1

[E[VtS̃
′
t],0

′]

)
U = E[X

(·)
t S̃′t]JsUs
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uniformly on Γ. Here, note that

1

n2
V′Z̈Z̈′V =

(
1

n
V′S̈

)(
1

n
S̈′V

)
+

(
1

n
V′Ẅ

)(
1

n
Ẅ′V

)
= E[VtS̃

′
t]E[S̃tV

′
t] + oP(1)

by applying Assumption 6(iii) and the ergodic theorem, and (E[VtS̃
′
t]E[S̃tV

′
t])
−1 is well defined because of Assumption

6(ii). Next, we note that

1

n2
X(·)′Q1X(·) =

1

n
X(·)′Z̈

(
I− 1

n
Z̈′V

(
1

n2
V′Z̈Z̈′V

)−1 1

n
V′Z̈

)
1

n
Z̈′X(·)

= [E[X
(·)
t S̃′t],0

′]

(
I− [E[VtS̃

′
t],0

′]′
(
E[VtS̃

′
t]E[S̃tV

′
t]
)−1

[E[VtS̃
′
t],0

′]

)
[E[X

(·)
t S̃′t],0

′]′ + oP(1)

= E[X
(·)
t S̃′t]JsE[S̃tX

(·)
t ] + oP(1)

uniformly on Γ. Therefore, it now follows that

Dn = sup
γ∈Γ

1

n

{X(γ)′Q1U}2

X(γ)′Q1X(γ)
⇒ sup

γ∈Γ

(
E[X

(γ)
t S̃′t]JsUs

{E[X
(γ)
t S̃′t]JsE[S̃tX

(γ)
t ]}1/2

)2

under H0. Here, if we apply the definition of πs(·) to the right side, it is equivalent to supγ∈Γ(πs(γ)′Us)
2, and this

completes the proof. �

Proof of Theorem 6: (i) This is obvious from Corollary 1.

(ii) For the given claim, note that limn→∞ P(q̂n > q∗) = limn→∞αn = 0 by the given condition. Furthermore,

for any q < q∗, if cvq(αn) = o(n), then limn→∞ P(Dn,q > cvq(αn)) = 1, implying that the desired result follows if

cvq(αn)) = o(n). We show this as follows.

First, note that supγ∈Γ(q̄) Z2
q (γ) ≤ supγ∈Γ(q̄) max2[0,Zq(γ)] + supγ∈Γ(q̄) min2[0,Zq(γ)]. This implies that for any

u > 0,

P

(
sup
γ∈Γ(q̄)

Z2
q (γ) ≥ u2

)
≤ P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)
+ P

(
inf

γ∈Γ(q̄)
Zq(γ) ≤ − u√

2

)
= 2P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)

from the inequality in the proof of theorem 2 of Cho and Phillips (2018). We further note that Borel’s inequality (e.g.,

Piterbarg, 1996, p. 13) implies that

P

(
sup
γ∈Γ(q̄)

Zq(γ) ≥ u√
2

)
≤ 2Ψ

(
u/
√

2− aq
σq

)
,

and so it follows that

P

(
sup
γ∈Γ(q̄)

Z2
q (γ) ≥ u2

)
≤ 4Ψ

(
u/
√

2− aq
σq

)
≤ 2 exp

(
−
u2 − 2

√
2uaq + a2

q

4σ2
q

)
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from the fact that Ψ(·) ≤ 1
2 exp(−(·)2/2). We now let the left-hand side of this inequality and u2 to be αn and cvq(αn),

respectively. Then, it follows that

− log(αn)

n
≥ 1

n

(
a2
q

4σ2
q

− log(2)

)
+

1

4σ2
q

(
cvq(αn)

n

)
− aq√

2σ2
q

(
cvq(αn)

n2

)1/2

.

Note that n−1(a2
q/(4σ

2
q ) − log(2)) → 0, and the sum of the last terms is greater than zero, provided that cv1/2

q (αn) >

2
√

2aq and is achieved as αn → 0. Furthermore, the given condition implies that −log(αn)/n→ 0, so that

1

4σ2
q

(
cvq(αn)

n

)
− aq√

2σ2
q

(
cvq(αn)

n2

)1/2

= o(1).

Therefore, it follows that cvq(αn) = o(n), as desired. �

A.2 Data Construction

Using the Compustat fundamental annual, we construct firm-level value-added, capital stock, employment, and material

inputs following the data-cleaning procedure conducted by İmrohoroğlu and Tüzel (2014). We supplement Compustat

with the Gross Domestic Product (GDP) price deflator, the investment price deflator, and the national wage index from

the Social Security Administration. See the online Appendix of İmrohoroğlu and Tüzel (2014) for more details. When

we construct the data set, we use their code that is downloadable from

https://sites.google.com/usc.edu/selale-tuzel/home?authuser=2.

The data set is constructed by the following procedure:

(a) We exclude financial firms (SIC ∈ [6000, 6999]) and regulated firms (SIC ∈ [4900, 4999]).

(b) We keep only observations with positive values on sales (SALE), total assets (AT), number of employees (EMP),

gross property, plant, and equipment (PPEGT), depreciation (DP), accumulated depreciation (DPACT), and capital

expenditures (CAPX).

(c) We compute the material input (M) by total expenditure (TE) minus labor expenditure (LE), where TE is obtained

as SALE minus operating income before depreciation and amortization (OIBDP), and LE is computed by EMP

multiplied by the national wage index from the Social Security Administration.

(d) We compute the value-added by SALE minus M. Both SALE and M are deflated by the GDP price deflator.

(e) We use EMP as the labor input.

(f) Finally, we deflate PPEGT using the investment price deflator and use this as the capital stock. When deflating

PPEGT, we use the deflator corresponding to the average age of capital of each year. �
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DGP Test Stat. α \ n 100 200 300 400 500

A

1% 0.52 1.02 1.12 1.08 0.98
Dn 5% 3.54 4.20 5.08 4.74 4.96

10% 8.64 9.14 9.86 10.08 10.12
1% 0.72 1.14 1.30 1.06 1.26

Hn 5% 4.80 5.50 5.18 5.34 5.72
10% 10.06 10.26 10.52 10.36 10.44
1% 0.90 1.28 1.22 1.22 1.08

Bn 5% 4.90 5.38 5.38 5.40 5.08
10% 9.34 10.30 10.06 10.46 11.12
1% 0.72 0.88 0.90 0.96 1.08

Jn 5% 4.80 5.04 4.76 4.58 4.62
10% 9.62 9.94 9.68 9.66 9.60

B

1% 2.14 1.96 1.90 1.62 1.52
Dn 5% 7.50 6.64 7.04 5.94 6.26

10% 12.90 11.76 11.82 11.42 10.76
1% 1.06 1.06 1.12 1.20 1.36

Hn 5% 5.10 4.90 4.78 5.30 5.08
10% 10.30 10.26 9.72 9.88 10.58
1% 1.42 1.18 1.42 1.24 1.04

Bn 5% 5.76 5.60 5.70 5.32 5.36
10% 10.54 10.94 10.92 10.74 10.44
1% 0.92 0.80 0.92 1.04 0.96

Jn 5% 5.06 4.88 5.28 4.58 4.42
10% 9.90 9.84 9.82 9.48 9.28

Table 1: EMPIRICAL REJECTION RATES UNDER THE NULL (IN PERCENTAGE). Number of Replications: 5,000. This
table shows the empirical rejection rates of the DD-and the other test statistics under the null hypothesis. DGP A:
Yt = Xt+Ut andXt :=

∑4
j=1 Ztj +U2

t ·1(|Ut| ≤ 1) such that Ut ∼ IIDN(0, 1), Zt1 ∼ IID U(0, 1), Zt2 and Zt3 ∼ IID
Beta(5, 5), and Zt1 ∼ IID Beta(5, 3); and DGP B: Yt = Xt +Ut and Xt :=

∑4
j=1 Ztj +U2

t such that Ut ∼ IID N(0, 1),
Zt1 ∼ IID Half-N(0, 1), Zt2 ∼ IID Beta(5, 5), and Zt3 ∼ IID Beta(5, 3), and Zt3 ∼ IID X 2

1 . Each of Zt1, . . . , Zt4, and
Ut is independently distributed. Model: Mo

1 := {mt(ω) := Yt −Xtξ − βXγ
t : ω ∈ Ω ⊂ R3} with Γ := [−0.25, 2.25].

Estimation: GMM estimation with Vt := Xt, Zt := (Zt1, . . . , Zt4)′, and Mn := (n−1Z′Z)−1 forDn andHn; and GMM
estimation with Vt := X̃t, Zt := Z̃t, and Mn := (n−1

∑n
t=1 Z̃

2
t )−1 for Hn, where X̃t := Xt/max[X1, . . . , Xn] and

Z̃t :=
∑4

j=1 Ztj/max[
∑4

j=1 Z1j , . . . ,
∑4

j=1 Znj ]. The weighted bootstrap is applied to Dn, and the bootstrap number
is 300.

55



DGP Test Stat. α \ n 100 200 300 400 500

A′

1% 26.63 52.20 70.07 83.53 91.40
Dn 5% 46.47 72.70 84.97 93.60 97.23

10% 57.73 81.77 89.57 96.83 98.63
1% 69.97 97.37 99.87 100.0 100.0

Hn 5% 87.73 99.47 100.0 100.0 100.0
10% 93.73 99.87 100.0 100.0 100.0
1% 25.07 59.40 81.37 92.93 98.40

Bn 5% 49.17 80.93 93.33 97.87 99.87
10% 62.00 88.90 96.43 99.27 99.97
1% 7.72 22.44 40.26 57.58 72.3

Jn 5% 22.30 46.12 64.72 78.74 88.12
10% 34.20 59.60 75.56 86.50 93.68

A′′

1% 76.83 78.17 79.93 82.90 84.20
Dn 5% 83.87 85.37 86.50 88.60 89.83

10% 87.67 88.30 90.03 91.13 91.43
1% 12.27 24.37 35.47 45.27 55.50

Hn 5% 28.80 44.30 57.90 67.27 75.83
10% 40.77 56.13 68.47 77.43 83.50
1% 1.73 4.40 6.57 10.10 14.17

Bn 5% 8.90 15.63 20.90 27.80 33.33
10% 17.20 26.60 32.80 40.97 46.47
1% 1.32 2.34 3.28 4.16 6.12

Jn 5% 7.98 10.00 11.78 14.80 19.10
10% 14.22 17.92 20.02 25.10 30.52

B′

1% 50.57 82.03 94.43 98.73 99.77
Dn 5% 70.23 93.70 98.53 99.83 99.97

10% 79.87 96.07 99.40 99.93 100.00
1% 38.17 79.07 94.43 98.97 99.83

Hn 5% 65.93 92.97 98.90 99.87 100.00
10% 78.37 96.37 99.80 99.97 100.00
1% 1.43 3.00 2.97 3.23 4.10

Bn 5% 6.10 8.87 8.70 10.33 12.43
10% 11.97 14.57 15.70 17.50 19.27
1% 24.20 62.13 84.90 94.77 98.57

Jn 5% 47.80 80.27 95.00 98.83 99.80
10% 60.70 88.30 97.53 99.50 99.90

B′′

1% 41.73 65.93 83.27 89.43 95.93
Dn 5% 57.87 80.77 91.87 95.87 98.80

10% 65.90 87.40 95.47 97.73 99.20
1% 14.20 35.50 58.73 74.50 87.90

Hn 5% 35.43 65.60 83.77 91.80 97.40
10% 50.97 79.50 91.70 96.33 98.73
1% 1.17 1.33 1.77 2.10 1.87

Bn 5% 5.87 5.73 6.17 7.00 6.83
10% 10.90 11.23 12.07 12.40 12.40
1% 21.30 46.17 66.40 80.90 89.13

Jn 5% 38.33 65.37 82.47 90.27 95.87
10% 49.17 74.80 88.50 93.73 97.90

Table 2: EMPIRICAL REJECTION RATES UNDER THE ALTERNATIVES (IN PERCENTAGE). Number of Replications:
3,000. This table shows the empirical rejection rates of the DD-and the other test statistics under the alternatives. DGP A′:
Yt = Xt−0.4X2

t +Ut with bd = 1; DGP A′′: Yt = Xt−0.4X2
t +Ut with bd = 3, whereXt :=

∑4
j=1 Ztj+U2

t ·1(|Ut| ≤
bd) such that Ut ∼ IID N(0, 1), Zt1 ∼ IID U(0, 1), Zt2 and Zt3 ∼ IID Beta(5, 5), and Zt4 ∼ IID Beta(5, 3); DGP B′:
Yt = Xt + tanh(−Xt/2) + Ut; DGP B′′: Yt = Xt + 2| sin(−Xt/5)| + Ut, where Xt :=

∑4
j=1 Ztj + U2

t such that
Ut ∼ IID N(0, 1), Zt1 ∼ IID Half-N(0, 1), Zt2 ∼ IID Beta(5, 5), and Zt3 ∼ IID Beta(5, 3), and Zt3 ∼ IID X 2

1 . Each
of Zt1, . . . , Zt4, and Ut is independently distributed. Model: Mo

1 := {mt(ω) := Yt − Xtξ − βXγ
t : ω ∈ Ω ⊂ R3}

with Γ := [−0.25, 2.25]. Estimation: GMM estimation with Vt := Xt, Zt := (Zt1, . . . , Zt4)′, and Mn := (n−1Z′Z)−1

for Dn and Hn; and GMM estimation with Vt := X̃t, Zt := Z̃t, and Mn := (n−1
∑n

t=1 Z̃
2
t )−1 for Hn, where

X̃t := Xt/max[X1, . . . , Xn] and Z̃t :=
∑4

j=1 Ztj/max[
∑4

j=1 Z1j , . . . ,
∑4

j=1 Znj ]. The weighted bootstrap is applied
to Dn, and the bootstrap number is 300.
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α Test Stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

10%

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 89.83 93.07 92.80 93.13 91.77 91.50 91.60 89.90 90.53 91.40
3 9.27 6.60 6.83 6.57 8.03 8.20 8.13 9.80 9.10 8.43
≥ 4 0.90 0.33 0.37 0.30 0.20 0.30 0.27 0.30 0.37 0.17

Jn

1 86.00 51.30 16.60 3.83 1.03 0.13 0.00 0.00 0.00 0.00
2∗ 7.90 41.80 76.97 90.67 92.60 93.10 93.23 93.47 93.17 93.33
3 2.47 1.80 1.70 1.33 1.57 1.77 1.87 1.60 1.33 1.90
≥ 4 3.63 5.10 4.73 4.17 4.80 5.00 4.90 4.93 5.50 4.77

5%

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 95.23 97.57 96.43 97.00 96.77 96.53 96.50 95.53 96.07 95.90
3 4.47 2.43 3.57 2.97 3.20 3.43 3.47 4.43 3.93 4.00
≥ 4 0.30 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.00 0.10

Jn

1 93.23 62.90 25.93 7.73 2.20 0.40 0.03 0.00 0.00 0.00
2∗ 4.10 33.90 71.27 89.60 94.87 96.10 97.13 96.93 97.07 97.00
3 1.17 1.07 0.73 0.83 0.77 1.07 0.70 0.63 0.83 0.90
≥ 4 1.50 2.13 2.07 1.83 2.17 2.43 2.13 2.43 2.10 2.10

1%

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 99.10 99.83 99.70 99.53 99.47 99.40 99.40 99.20 99.20 99.40
3 0.90 0.17 0.30 0.47 0.53 0.60 0.60 0.80 0.80 0.60
≥ 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jn

1 98.30 81.37 47.07 19.13 6.50 1.70 0.37 0.10 0.03 0.00
2∗ 1.30 18.20 52.40 80.33 93.13 97.50 99.03 99.27 99.37 99.47
3 0.13 0.13 0.17 0.33 0.20 0.30 0.20 0.30 0.27 0.20
≥ 4 0.27 0.30 0.37 0.20 0.17 0.50 0.40 0.33 0.33 0.33

Table 3: ESTIMATED POLYNOMIAL DEGREE BY THE DD- AND J-TEST STATISTICS (IN PERCENTAGE). Number of
Replications: 3,000. This table shows the estimated polynomial degrees by sequentially applying the DD- and J-tests
when the significance level (α) is fixed. The true polynomial equation degree is 2, as indicated by the asterisks (*). DGP:
Yt = Dt +Xt + 0.005X2

t + Ut, Xt :=
∑11

j=1 Ztj + U2
t , (Dt, Ut)

′y ∼ IID N(0, I2), Zt1 ∼ IID U(0, 1), Zt2 and Zt3 ∼
IID X 2

1 , Zt4 and Zt5 ∼ IID Rayleigh(1), Zt6 and Z7t ∼ IID Half N(0, 1), Zt8 and Zt9 ∼ IID Beta(5, 3), and Zt10 and
Zt11 ∼ IID Beta(5, 5). Each of Dt, Ut, Zt1, . . ., Zt11 is independently distributed. Model: M′q := {mt,q(ω

(q)) :=

Yt−Dtη−Xtξ1− . . .−Xq
t ξq−βX

γ
t : ω(q) ∈ Ω(q)} with q ∈ I(3), ω(q) := (ξ1, . . . , ξq, η, β, γ)′, and Γ := [0.50, 3.50].

Estimation: GMM estimation by letting Zt := (Dt, Zt1, . . . , Zt11)′ and Vt,q := (Dt, Xt, . . . , X
q
t )′.
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Methods Test Stat. q \ n 100 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 89.83 97.87 97.97 98.60 98.93 98.57 98.73 98.50 98.60 98.90
3 9.27 2.13 2.03 1.40 1.07 1.43 1.27 1.50 1.40 1.10

Seq. Est. ≥ 4 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
with

Jn

1 86.00 64.53 31.67 11.83 3.87 1.07 0.17 0.07 0.00 0.00
αn = n−1/2 2∗ 7.90 32.70 66.77 86.87 94.93 97.33 98.80 98.67 99.00 99.10

3 2.47 0.80 0.47 0.43 0.40 0.67 0.30 0.63 0.33 0.27
≥ 4 3.63 1.97 1.10 0.87 0.80 0.93 0.73 0.63 0.67 0.63

(Hypo. Rate) 90.00 95.53 96.84 97.42 97.76 98.00 98.17 98.31 98.42 98.51

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 96.90 99.83 99.83 99.60 99.73 99.67 99.87 99.70 99.73 99.83
3 3.03 0.17 0.17 0.40 0.27 0.33 0.13 0.30 0.27 0.17

Seq. Est. ≥ 4 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
with

Jn

1 95.23 81.90 55.03 27.37 11.93 3.77 1.50 0.33 0.13 0.03
αn = n−3/4 2∗ 3.23 17.77 44.70 72.43 87.87 96.03 98.43 99.60 99.80 99.97

3 0.70 0.10 0.07 0.07 0.07 0.10 0.03 0.00 0.00 0.00
≥ 4 0.83 0.23 0.20 0.13 0.13 0.10 0.03 0.07 0.07 0.00

(Hypo. Rate) 96.84 99.05 99.44 99.59 99.67 99.72 99.75 99.78 99.80 99.82

Dn

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2∗ 99.10 99.87 99.87 99.80 99.87 99.67 99.87 99.70 99.73 99.83
3 0.90 0.13 0.13 0.20 0.13 0.33 0.13 0.30 0.27 0.17

Seq. Est. ≥ 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
with

Jn

1 98.30 92.30 73.70 44.87 25.00 10.30 3.63 1.30 0.40 0.20
αn = n−1 2∗ 1.30 7.60 26.23 55.07 74.97 89.70 96.37 98.70 99.60 99.80

3 0.13 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
≥ 4 0.27 0.10 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00

(Hypo. Rate) 99.00 99.80 99.90 99.93 99.95 99.96 99.97 99.97 99.98 99.98
1 49.80 7.36 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Akaike 2 32.94 72.50 80.52 83.10 83.00 83.08 83.28 81.48 82.04 83.50
3 17.26 20.14 19.06 16.90 17.00 16.92 16.72 18.52 17.96 16.50
1 78.98 23.58 2.82 0.30 0.00 0.00 0.00 0.00 0.00 0.00

MSC Hannan-Quinn 2 17.56 71.12 92.16 95.94 95.98 95.78 96.44 95.84 96.22 96.42
3 3.46 5.30 5.02 3.76 4.02 4.22 3.56 4.16 3.78 3.58
1 95.86 57.60 15.88 3.44 0.60 0.10 0.00 0.00 0.00 0.00

Bayesian 2 4.02 42.16 83.82 96.16 99.10 99.30 99.78 99.64 99.74 99.76
3 0.12 0.24 0.30 0.40 0.30 0.60 0.22 0.36 0.26 0.24

Table 4: PRECISION RATES OF THE SEQUENTIAL TESTING PROCEDURES AND MSCS (IN PERCENTAGE). Number
of Replications: 3,000. This table shows the estimated polynomial degrees by sequentially applying the DD- and J-
tests when the significance level depends on the sample size: αn = n−1/2, n−3/4, or n−1. The true polynomial equation
degree is 2, as indicated by the asterisks (*). DGP: Yt = Dt+Xt+0.005X2

t +Ut,Xt :=
∑11

j=1 Ztj+U
2
t , (Dt, Ut)

′ ∼ IID
N(0, I2), Zt1 ∼ IID U(0, 1), Zt2 and Zt3 ∼ IID X 2

1 , Zt4 and Zt5 ∼ IID Rayleigh(1), Zt6 and Z7t ∼ IID Half N(0, 1),
Zt8 and Zt9 ∼ IID Beta(5, 3), and Zt10 and Zt11 ∼ IID Beta(5, 5). Each of Dt, Ut, Zt1, . . ., Zt11 is independently
distributed. Model: M′q := {mt,q(ω

(q)) := Yt − Dtη − Xtξ1 − . . . − Xq
t ξq − βX

γ
t : ω(q) ∈ Ω(q)} with q ∈ I(3),

ω(q) := (ξ1, . . . , ξq, η, β, γ)′, and Γ := [0.50, 3.50]. Estimation: GMM estimation by letting Zt := (Dt, Zt1, . . . , Zt11)′

and Vt,q := (Dt, Xt, . . . , X
q
t )′.
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n = 500
γ∗ \ β∗ −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

0.50 6.13 4.57 1.57 4.63 1.83 4.17 5.27
0.75 3.43 2.53 0.80 4.63 0.93 2.13 3.57
1.00 4.73 4.90 4.10 4.63 4.63 4.63 4.63
1.25 4.17 3.13 1.77 4.63 1.53 3.80 4.67
1.50 5.23 6.00 4.53 4.63 4.60 5.37 4.77

n = 5, 000
γ∗ \ β∗ −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

0.50 6.33 6.30 5.20 4.73 4.90 5.77 5.77
0.75 5.83 5.43 2.13 4.73 2.00 6.00 6.27
1.00 4.00 4.53 4.17 4.73 4.07 4.33 4.00
1.25 5.73 5.93 5.00 4.73 5.10 5.33 6.47
1.50 5.03 4.77 5.47 4.73 5.13 5.30 5.30

Table 5: EMPIRICAL REJECTION RATES (IN PERCENT). This table shows the empirical rejection rates of the DD-test
statistic for n = 500 and n = 5, 000. The level of significance α is 5%. When β∗ = 0.00 or γ∗ = 1.00, we apply the
critical values obtained by applying Hansen’s (1996) weighted bootstrap to Theorem 1. For the other cases, the critical
values are obtained by applying the weighted bootstrap to the null approximation given in Theorem 4. When n = 10, 000,
the empirical rejection rates of the DD-test are modified to 3.40 and 4.40 for (β∗, γ∗) = (−0.25, 0.75) and (0.25, 0.75),
respectively. The number of experiments is 3,000, and the bootstrap iteration is 300.

OLS Estimation GMM Estimation
(1) (2) (3) (4)

log(Lt) 0.61∗∗∗ 0.84∗∗∗ 0.60∗∗∗ 0.80∗∗∗
(0.02) (0.06) (0.02) (0.06)

log(Kt) 0.56∗∗∗ 0.55∗∗∗ 0.56∗∗∗ 0.55∗∗∗
(0.09) (0.09) (0.09) (0.10)

log2(Kt)

log2(Lt) –0.01∗∗∗ –0.01∗∗∗

(0.00) (0.00)
log(K

(2018)
t ) –0.32∗∗∗ –0.31∗∗∗ –0.32∗∗∗ –0.31∗∗∗

(0.09) (0.09) (0.09) (0.09)
log(M

(2018)
t ) 0.19∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.01) (0.01) (0.01) (0.01)
KP-Fn 13,638 9,928
SY-Fn 11,320∗∗ 10,618∗∗

Dn 4.92 0.04
p-value of Dn (0.00) (0.94)
Jn 19.72 2.31
p-value of Jn (0.00) (0.68)
n 2,140 2,140 2,140 2,140

Table 6: THE OLS AND GMM ESTIMATES OF PRODUCTION FUNCTION. This table reports the OLS and GMM
estimates of (13). The dependent variable is the log of value-added. In columns (1)-(2), the OLS estimates are reported,
and in columns (3)-(4), the GMM estimates are reported. KP-Fn and SY-Fn denote Kleibergen and Papp’s (2006)
and Stock and Yogo’s (2005) F-tests, respectively, and n denotes the total number of the firms available in the year 2019.
Robust standard errors are given in the parentheses below the estimates, and *, **, and *** denote that p < 0.1, p < 0.05,
and p < 0.01, respectively.
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